且满足. (1)求出椭圆和双曲线的离心率, (2)设直线PA.PB.QB的斜率分别是 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,F′,F分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1
的右焦点,A、B为椭圆和双曲线的公共顶点.P、Q分别为双曲线和椭圆上不同于A、B的第一象限内的点,且满足
PA
+
PB
=λ(
QA
+
QB
)(λ∈R),
PF
=
3
QF′

(1)求出椭圆和双曲线的离心率;
(2)设直线PA、PB、QA、QB的斜率分别是k1,k2,k3,k4,求证:k1+k2+k3+k4=0.

查看答案和解析>>

下列关于圆锥曲线的命题:
①设A,B为两个定点,若|PA|-|PB|=2,则动点P的轨迹为双曲线;
②设A,B为两个定点,若动点P满足|PA|=10-|PB|,且|AB|=6,则|PA|的最大值为8;
③方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+
y2=1有相同的焦点.
其中真命题的序号
②③④
②③④
(写出所有真命题的序号).

查看答案和解析>>

下列关于圆锥曲线的命题:其中真命题的序号
②③
②③
.(写出所有真命题的序号).
①设A,B为两个定点,若|PA|-|PB|=2,则动点P的轨迹为双曲线;
②设A,B为两个定点,若动点P满足|PA|=10-|PB|,且|AB|=6,则|PA|的最大值为8;
③方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆x2+
y2
35
=1
有相同的焦点.

查看答案和解析>>

下列关于圆锥曲线的命题:其中真命题的序号    .(写出所有真命题的序号).
①设A,B为两个定点,若|PA|-|PB|=2,则动点P的轨迹为双曲线;
②设A,B为两个定点,若动点P满足|PA|=10-|PB|,且|AB|=6,则|PA|的最大值为8;
③方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线-=1与椭圆有相同的焦点.

查看答案和解析>>

下列关于圆锥曲线的命题:其中真命题的序号    .(写出所有真命题的序号).
①设A,B为两个定点,若|PA|-|PB|=2,则动点P的轨迹为双曲线;
②设A,B为两个定点,若动点P满足|PA|=10-|PB|,且|AB|=6,则|PA|的最大值为8;
③方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线-=1与椭圆有相同的焦点.

查看答案和解析>>


同步练习册答案