2 已知.则“ 是“ 的 ( )w.w.w.k.s.5.u.c.o.m A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件 查看更多

 

题目列表(包括答案和解析)

已知命题p:关于的方程有两不等实根;命题q:关于的不等式的解集为R.

(1)若p为真命题且q为假命题,试求的取值范围;w.w.w.k.s.5.u.c.o.m       

(2)若“p或q”为真,“p且q”为假,则的取值范围又是怎样的?

查看答案和解析>>

已知为等比数列,是它的前项和.若, 且与2的等差中项为,则="                    "                                     (    )w_w w.k*s_5 u.c o_m

A.35B.33C.31D.29

查看答案和解析>>

已知二面角的大小为为空间中任意一点,则过点且与平面和平面所成的角都是的直线的条数为(    )w.w.w.k.s.5.u.c.o.m    

A.2                  B.3                  C.4                  D.5 w.w.w.k.s.5.u.c.o.m    

查看答案和解析>>

定义在R上的函数f (x)满足:如果对任意x1,x2R,都有,则称函数f (x)是R上的凹函数.已知二次函数.w.w.w.k.s.5.u.c.o.m   

(1)当时,试判断函数f (x)是否为凹函数,并说明理由;

(2)如果函数f (x)对任意的x[0,1]时,都有,试求实数a的范围。

 

查看答案和解析>>

已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为   

A.                   B.                 C.                     D. w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

答案

A

A

A

A

B

B

B

C

C

A

11.  -3      12.    3       13.     14.

15.  4        (5,1,3) 

16.⑴

  

       =

由于  

时   

时     

此时  

综上取最大值时,  

17.⑴

因为函数的图象在点处的切线与直线平行,所以,即。                      (文2分)

过点  (文4分,理3分)

⑵由⑴知,

,则

易知的单调递增区间为,单调递减区间为。 

 (文6分,理5分)。

时,的最大值为,最小值为

时,的最大值为,最小值为;  (文10分,理7分)

时,的最大值为,最小值为; (文12分,理8分)

⑶因为为连续函数,所以=

由⑵得,则

,(理10分)

。     (理12分)

18.⑴,且平面平面

平面

平面

为二面角的平面角。   (4分)

J是等边三角形,,即二面角的大小为。   (5分)

⑵(理)设的中点为的中点为,连结

,①

,且平面平面

平面。     (7分)

平面

。            ②

由①、②知

,得四边形为平行四边形,

平面,又平面

平面平面。   

19.⑴三人恰好买到同一只股票的概率。  (文4分,理3分)

⑵解法一  三人中恰好有两个买到同一只股票的概率。    (文9分,理7分)

由⑴知,三人恰好买到同一只股票的概率为,所以三人中至少有两人买到同一只股票的概率。  (文12分,理9分)

解法二  。  (文12分,理9分)

⑶(只理科做)每股今天获利钱数的分布列为:

2

0

-1

0.5

0.2

0.3

所以,1000股在今日交易中获利钱数的数学期望为

1000   (理12分)

20.⑴由题意可知,

    (3分)

顶点不在同一条直线上。      (4分)

⑵由题意可知,顶点横、纵坐标分别是

消去,可得。     (12分)

为使得所有顶点均落在抛物线上,则有解之,得    (14分)

所以应满足的关系式是:。      (16分)

解法二    点的坐标满足

 在抛物线上,

   

又点的坐标满足且点也在抛物线上,

把点代入抛物线方程,解得。(13分)

因此,,抛物线方程为

所有顶点均落在抛物线

所应满足的关系式是:

21.⑴

由题意,得,    (2分)

⑵由⑴,得


同步练习册答案