已知函数在区间[0.m]上有最大值3.最小值2.则m的取值范围是( ) 查看更多

 

题目列表(包括答案和解析)

 已知函数在区间[0,m]上有最大值3,最小值2,则m的取值范围是(   )

A、[ 1,+∞)  B、[0,2]    C、(-∞,2]    D、[1,2]

 

查看答案和解析>>

已知函数f(x)=
-2-x+1x≤0
f(x-1)x>0
,则下列命题中:
(1)函数f(x)在[-1,+∞)上为周期函数;
(2)函数f(x)在区间[m,m+1)(m∈N)上单调递增;
(3)函数f(x)在x=m-1(m∈N)取到最大值0,且无最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有两个实根,则a∈[
1
3
1
2
)

正确的命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

已知函数f(x)=lnx-
1
2
ax2+bx(a>0),且f′(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:g(a)>ln(1+
a
2
)-1
(3)首先阅读材料:对于函数图象上的任意两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数图象上存在点M(x0,y0)(x0∈(x1,x2)),使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当x0=
x1+x2
2
时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x2+3x|x-a|,其中a∈R.
(1)当a=
1
3
时,方程f(x)=b恰有三个根,求实数b的取值范围;
(2)当a=
1
3
时,是否存在区间[m,n],使得函数的定义域与值域均为[m,n],若存在请求出所有可能的区间[m,n],若不存在请说明理由;
(3)若a>0,函数f(x)在区间(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

已知函数f(x)=mx3-x2+nx+13(m、n∈R).
(1)若函数f(x)在x=-2与x=1时取得极值,求m、n的值;
(2)当m=n=0时,若f(x)在闭区间[a,b](a<b)上有最小值4a,最大值4b,求区间[a,b].

查看答案和解析>>

一.选择题 1B  2B  3B   4C  5B  6A  7B   8D  9C  10C  11A  12B

二.填空题  13.3      14.      15.     16.

三.解答题

17.解:由已知      所以

所以.…… 4分

    解得.

所以   …… 8分

 于是 …… 10分

…… 12分

18.(Ⅰ)设{an}的公比为q,由a3=a1q2得    …… 2分

          (Ⅱ)…… 12分

19.解: (1)由知, …①        ∴…②…… 2分

恒成立,

恒成立, 故…… 4分

 将①式代入上式得:

, 即, 即,代入②得, …… 8分

(2) 解得:

, ∴不等式的解集为…… 12分

20、证(I)由a1=1,an+1=Sn(n=1,2,3,…),知a2=S1=3a1,, ,∴

又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{}是首项为1,公比为2的等比数列 …… 8分

证(II) 由(I)知,,于是Sn+1=4(n+1)?=4an(n)…… 12分

又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an

21. 解:(1). …… 2分

时, 时,, 因此的减区间是

 在区间上是减函数…… 5分

时, 时,, 因此的减区间是…… 7分

 在区间上是减函数

综上,…… 8分

(2). 若

在区间上,     …… 12分

22.解:(1)由题意和导数的几何意义得:

由(1)得c=-a-2c,代入a<b<c,再由a<0得

…… 6分

…… 10分

…… 14分

 

 


同步练习册答案