(1)求数列的通项公式, 查看更多

 

题目列表(包括答案和解析)





⑴求数列的通项公式;
⑵设,若恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由

查看答案和解析>>

数列的通项公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述结果推测出计算f(n)的公式,并用数学归纳法加以证明.

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3

   (2)若,求数列的前2m项和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

一.选择题 1B  2B  3B   4C  5B  6A  7B   8D  9C  10C  11A  12B

二.填空题  13.3      14.      15.     16.

三.解答题

17.解:由已知      所以

所以.…… 4分

    解得.

所以   …… 8分

 于是 …… 10分

…… 12分

18.(Ⅰ)设{an}的公比为q,由a3=a1q2得    …… 2分

          (Ⅱ)…… 12分

19.解: (1)由知, …①        ∴…②…… 2分

恒成立,

恒成立, 故…… 4分

 将①式代入上式得:

, 即, 即,代入②得, …… 8分

(2) 解得:

, ∴不等式的解集为…… 12分

20、证(I)由a1=1,an+1=Sn(n=1,2,3,…),知a2=S1=3a1,, ,∴

又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{}是首项为1,公比为2的等比数列 …… 8分

证(II) 由(I)知,,于是Sn+1=4(n+1)?=4an(n)…… 12分

又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an

21. 解:(1). …… 2分

时, 时,, 因此的减区间是

 在区间上是减函数…… 5分

时, 时,, 因此的减区间是…… 7分

 在区间上是减函数

综上,…… 8分

(2). 若

在区间上,     …… 12分

22.解:(1)由题意和导数的几何意义得:

由(1)得c=-a-2c,代入a<b<c,再由a<0得

…… 6分

…… 10分

…… 14分

 

 


同步练习册答案