题目列表(包括答案和解析)
记数列{
}的前n项和为为
,且
+
+n=0(n∈N*)恒成立.
(1)求证:数列
是等比数列;
(2)已知2是函数f(x)=
+ax-1的零点,若关于x的不等式f(x)≥
对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.
记数列{
}的前n项和为为
,且
+
+n=0(n∈N*)恒成立.
(1)求证:数列
是等比数列;
(2)已知2是函数f(x)=
+ax-1的零点,若关于x的不等式f(x)≥
对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n![]()
),其中
为正实数.
(Ⅰ)用
表示xn+1;
(Ⅱ)若a1=4,记an=lg
,证明数列{
}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项和为Sn,且Sn=1- bn.
(1)求数列{an}、{bn}的通项公式;
(2)记cn=anbn,求证:cn+1≤cn.
一.选择题 1B 2B 3B
二.填空题 13.3 14.
15.
16. 
三.解答题
17.解:由已知
所以
所以
.…… 4分
由
解得
.
所以
…… 8分
于是
…… 10分
故
…… 12分
18.(Ⅰ)设{an}的公比为q,由a3=a1q2得
…… 2分
(Ⅱ)
…… 12分
19.解: (1)由
知,
…① ∴
…②…… 2分
又
恒成立,
有
恒成立, 故
…… 4分
将①式代入上式得:
, 即
故
, 即
,代入②得,
…… 8分
(2)
即
∴
解得:
, ∴不等式的解集为
…… 12分
20、证(I)由a1=1,an+1=
Sn(n=1,2,3,…),知a2=
S1=
,
,∴
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=
Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn,
(n=1,2,3,…).故数列{
}是首项为1,公比为2的等比数列
…… 8分
证(II) 由(I)知,
,于是Sn+1=4(n+1)?
=4an(n
)…… 12分
又a2=3S1=3,则S2=a1+a2=4=
21. 解:(1)
.
…… 2分
当
时,
时,
, 因此
的减区间是

在区间
上是减函数
…… 5分
当
时,
时,
, 因此
的减区间是
…… 7分

在区间
上是减函数
综上,
或
…… 8分
(2). 若



在区间
上,
…… 12分
22.解:(1)由题意和导数的几何意义得:

由(1)得c=-a
…… 6分

…… 10分
…… 14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com