A.内 B.内 查看更多

 

题目列表(包括答案和解析)

A(2,-2)点为坐标平面上的一个点,B(a,b)点为坐标平面上的一点,O点为坐标原点,记“数学公式”为事件C.
(1)若将一粒骰子连续抛掷两次(骰子是有六个面的正方体且每个面分别标有1,2,3,4,5,6)得到点数分别记为a,b,求事件C发生的概率;
(2)若a、b均为从区间[0,6]内任取的一个数,记事件D表示“|a-b|<2”,求事件D发生的概率.

查看答案和解析>>

A(2,-2)点为坐标平面上的一个点,B(a,b)点为坐标平面上的一点,O点为坐标原点,记“”为事件C.
(1)若将一粒骰子连续抛掷两次(骰子是有六个面的正方体且每个面分别标有1,2,3,4,5,6)得到点数分别记为a,b,求事件C发生的概率;
(2)若a、b均为从区间[0,6]内任取的一个数,记事件D表示“|a-b|<2”,求事件D发生的概率.

查看答案和解析>>

已知A(2,1),B(5,5),C(0,4),动点P(x,y)在△ABC内部或边界上,则定点Q(6,3)到点P(x,y)的最小距离为   

查看答案和解析>>

(1)化简
(2)解lga+2lgb+lgc.
(3)用二项式定理计算(3.02)4,使误差小于千分之一.
(4)试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和.
(5)已知球的半径等于r,试求内接正方形的体积.
(6)已知a是三角形的一边,β及γ是这边的两邻角,试求另一边b的计算公式.

查看答案和解析>>

(2013•深圳二模)P(x,y)是以A(4,1),B(-1,-6),C(-3,2)为顶点的三角形及其内部上的任一点,则4x-3y的最大值为
14
14

查看答案和解析>>

1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

5.(文)D (理)C 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

13.33 14.7 15.18

  16.只要写出-4c2ccc≠0)中一组即可,如-4,2,1等

  17.解析:

              

              

  18.解析:(1)由成等差数列,得

  若q=1,则

  由≠0 得 ,与题意不符,所以q≠1.

  由,得

  整理,得,由q≠0,1,得

  (2)由(1)知:

  ,所以成等差数列.

  19.解析:(1)记“摸出两个球,两球恰好颜色不同”为A,摸出两个球共有方法种,

  其中,两球一白一黑有种.

  ∴ 

  (2)法一:记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为B,摸出一球得白球的概率为,摸出一球得黑球的概率为

  ∴ PB)=0.4×0.6+0.6+×0.4=0.48

  法二:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.

  ∴ 

  ∴ “有放回摸两次,颜色不同”的概率为

  20.解析:(甲)(1)∵ △为以点M为直角顶点的等腰直角三角形,∴ 

  ∵ 正三棱柱, ∴ 底面ABC

  ∴ 在底面内的射影为CMAMCM

  ∵ 底面ABC为边长为a的正三角形, ∴ 点MBC边的中点.

  (2)过点CCH,由(1)知AMAMCM

  ∴ AM⊥平面 ∵ CH在平面内, ∴ CHAM

  ∴ CH⊥平面,由(1)知,

  ∴ . ∴ 

  ∴ 点C到平面的距离为底面边长为

  (3)过点CCII,连HI, ∵ CH⊥平面

  ∴ HICI在平面内的射影,

  ∴ HI,∠CIH是二面角的平面角.

  在直角三角形中,

  ∴ ∠CIH=45°, ∴ 二面角的大小为45°

  (乙)解:(1)以B为原点,建立如图所示的空间直角坐标系.

  ∵ AC2a,∠ABC=90°,

  ∴ 

  ∴ B(0,0,0),C(0,,0),A,0,0),

  ,0,3a),(0,3a),(0,0,3a).

  ∴ 

  ∴ 

  ∴ , ∴ 

  ∴ . 故BE所成的角为

  (2)假设存在点F,要使CF⊥平面,只要

  不妨设AFb,则F,0,b),,0,, ∵ , ∴ 恒成立.

  

  故当2a时,平面

  21.解析:(1)法一:l

  解得. ∵ 成等比数列,

  ∴  ∴  

  ∴ . ∴ 

  法二:同上得

  ∴ PAx轴.. ∴ 

  (2) ∴ 

  即 , ∵ 

  ∴ ,即 . ∴ ,即 

  22.解析:(1). 又cb<1,

  故 方程fx)+1=0有实根,

  即有实根,故△=

  即

  又cb<1,得-3<c≤-1,由

  (2)

  ∴ cm<1 ∴ 

  ∴ . ∴ 的符号为正.

 


同步练习册答案