③ ④有最小值0其中正确命题的序号是 . 查看更多

 

题目列表(包括答案和解析)

下列几个命题:其中正确的有
 
.(以序号作答)
①函数y=4cos2x,x∈[-l0π,10π]不是周期函数;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③函数y=
6+sin2x
2-sinx
的最小值为2
10
-4

④已知m2+n2=4,x2+y2=9,则mx+ny的最大值为
13
2

查看答案和解析>>

下列几个命题:其中正确的有    .(以序号作答)
①函数y=4cos2x,x∈[-l0π,10π]不是周期函数;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③函数的最小值为
④已知m2+n2=4,x2+y2=9,则mx+ny的最大值为

查看答案和解析>>

下列几个命题:其中正确的有________.(以序号作答)
①函数y=4cos2x,x∈[-l0π,10π]不是周期函数;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③函数数学公式的最小值为数学公式
④已知m2+n2=4,x2+y2=9,则mx+ny的最大值为数学公式

查看答案和解析>>

给出以下三个命题,其中所有正确命题的序号为

①已知等差数列{an}的前n项和为Sn
AO
OB
为不共线向量,又
OP
=a1
OA
+a2012
OB
,若
PA
PB
,则S2012=1006.
②“a=
1
0
1-x2
dx
”是函数“y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
③已知函数f(x)=|x2-2|,若f(a)=f(b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1.

查看答案和解析>>

给出下列三个命题中,其中所有正确命题的序号是

①函数f(x)=x+
k
x
(k≠0)在(0,+∞)上的最小值是2
k

②命题“函数f(x)=xsinx+1,当x1,x2∈[-
π
2
π
2
],且|x1|>|x2|时,有f(x1)>f(x2)”是真命题.
③函数f(x)=|x2-4|,若f(m)=f(n),且0<m<n,则动点p(m,n)到直线5x+12y+39=0的最小距离是3-2
2

查看答案和解析>>

Ⅰ 选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

 B

C

C

B

C

C

B

A

A

B

 

Ⅱ 非选择题

二、13.         14.4          15.-2            16.①    

三、解答题:

17.(I)解:

    --------------------------4分

,即时,取得最大值.

因此,取得最大值的自变量x的集合是  -------8分

(Ⅱ)解:

由题意得,即.

因此,的单调增区间是.-------------------13分

18.⑴∵f (x) ≥x的解集为R

∴x2-(4a+1)x+a2≥0对于x∈R恒成立        -----------------------------------2分

∴△=(4a+1)24a2≤0

  即12 a28a+1≤0             --------------------------------------------------------4分

    (2a+1)(6a+1)≤0

∴?≤a≤?

∴a的取值范围为[?,?]       ------------------------------------------------------6分

(2)∵,---------------------------------------------------------8分

的对称轴,知单调递增

处取得最小值,即---------------------------------------------------11分

    解得  ∵        ∴----------------------13分

19、解:由<0,得

(*)----------------------------------------------------------------------2分

⑴当 a>0时,(*)等价于a>0时,

∴不等式的解为:<x<1--------------------------------------------------------------------5分   

⑵当a=0时,(*)等价于<0即x<1----------------------------------------------------8分

⑶当a<0时,(*)等价于a<0时,

∴   不等式的解为 : x<1或x>-----------------------------------------------------11分

综上所述:当a>0时,不等式的解集为(,1);当a=0时,不等式的解集为

当a<0时,不等式的解集为∪()-------------------------------12分

20.

---------------------------------------------------------------------------------3分

---------------------------------------------------------------------7分

---------------------------------12分

21.解:(1)由已知

  

 

(2)

 椭圆的方程为

22.(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),             ①

令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.

令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.---------------------------------------3分

(2)设

所以f(x)是增函数.----------------------------------------------------6分

(3)解:∵由(2)知f(x) 在R上是单调增函数,又由(1)f(x)是奇函数.

f(k?3)<-f(3-9-2)=f(-3+9+2),  k?3<-3+9+2,

3-(1+k)?3+2>0对任意x∈R成立.

令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.

R恒成立.

---------------------------------------------------------------------------12分

 

 


同步练习册答案