已知数列是其前项和.且. 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前项和为Sn,点(an+2,Sn+1)在直线y=4x-5上,其中n∈N,令bn=an+1-2an,且a1=1.
(1)求证数列{bn}是等比数列;
(2)求数列{nbn}的前n项和Tn

查看答案和解析>>

已知数列是以d为公差的等差数列,数列是以q为公比的等比数列.
(1)若数列的前n项和为Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的约数),求证:数列中每一项都是数列中的项.

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为为其前n项和,且满足,.数列满足,为数列的前项和.

(1)求数列的通项公式

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有

的值;若不存在,请说明理由.

 

查看答案和解析>>

已知数列是等比数列,是其前项和.若,且的等差中项为,则        

 

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

 

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:

       是减函数,由,得,故选A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的单调递增区间为

       (2)

             

             

             

18.解:(1)当时,有种坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列为          

0

2

3

4

              则

19.解:(1)时,

             

              又             

             

              是一个以2为首项,8为公比的等比数列

             

       (2)

             

              最小正整数

20.解法一:

       (1)设于点

              平面

于点,连接,则由三垂线定理知:是二面角的平面角.

由已知得

∴二面角的大小的60°.

       (2)当中点时,有平面

              证明:取的中点,连接,则

              ,故平面即平面

              平面

              平面

解法二:由已知条件,以为原点,以轴、轴、轴建立空间直角坐标系,则

             

       (1)

              ,设平面的一个法向量为

设平面的一个法向量为,则

二面角的大小为60°.

(2)令,则

      

       由已知,,要使平面,只需,即

则有,得中点时,有平面

21.解:(1)由条件得,所以椭圆方程是

             

(2)易知直线斜率存在,令

       由

      

代入

       有

22.解:(1)

       上为减函数,时,恒成立,

       即恒成立,设,则

       时,在(0,)上递减速,

      

      

(2)若即有极大值又有极小值,则首先必需有两个不同正要

       即有两个不同正根

       令

    ∴当时,有两个不同正根

    不妨设,由知,

    时,时,时,

    ∴当时,既有极大值又有极小值.www.ks5u.com

 

 


同步练习册答案