22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:

       是减函数,由,得,故选A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的单调递增区间为

       (2)

             

             

             

18.解:(1)当时,有种坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列为          

0

2

3

4

              则

19.解:(1)时,

             

              又             

             

              是一个以2为首项,8为公比的等比数列

             

       (2)

             

              最小正整数

20.解法一:

       (1)设于点

              平面

于点,连接,则由三垂线定理知:是二面角的平面角.

由已知得

∴二面角的大小的60°.

       (2)当中点时,有平面

              证明:取的中点,连接,则

              ,故平面即平面

              平面

              平面

解法二:由已知条件,以为原点,以轴、轴、轴建立空间直角坐标系,则

             

       (1)

              ,设平面的一个法向量为

设平面的一个法向量为,则

二面角的大小为60°.

(2)令,则

      

       由已知,,要使平面,只需,即

则有,得中点时,有平面

21.解:(1)由条件得,所以椭圆方程是

             

(2)易知直线斜率存在,令

       由

      

代入

       有

22.解:(1)

       上为减函数,时,恒成立,

       即恒成立,设,则

       时,在(0,)上递减速,

      

      

(2)若即有极大值又有极小值,则首先必需有两个不同正要

       即有两个不同正根

       令

    ∴当时,有两个不同正根

    不妨设,由知,

    时,时,时,

    ∴当时,既有极大值又有极小值.www.ks5u.com

 

 


同步练习册答案