题目列表(包括答案和解析)
活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.
设双曲线
的两个焦点分别为
、
,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点
能否作出直线
,使
与双曲线
交于
、
两点,且
,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为
,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理
表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
椭圆
的左、右焦点分别为
,一条直线
经过点
与椭圆交于
两点.
⑴求
的周长;
⑵若
的倾斜角为
,求
的面积.
【解析】(1)根据椭圆的定义
的周长等于4a.
(2)设
,则
,然后直线l的方程与椭圆方程联立,消去x,利用韦达定理可求出所求三角形的面积.
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=
.
(Ⅰ)若△ABC的面积等于
,求a、b;
(Ⅱ)若
,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得
又因为△ABC的面积等于
,所以
,得
联立方程,解方程组得
.
第二问中。由于
即为即
.
当
时,
,
,
,
所以
当
时,得
,由正弦定理得
,联立方程组
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得
,………1分
又因为△ABC的面积等于
,所以
,得
,………1分
联立方程,解方程组得
.
……………2分
(Ⅱ)由题意得![]()
,
即
.
…………2分
当
时,
,
,
,
……1分
所以
………………1分
当
时,得
,由正弦定理得
,联立方程组
,解得
,
;
所以![]()
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1) 求曲线C的方程.
(2) 是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
?若存在,求出m的取值范围,若不存在,请说明理由.
【解析】(1)由题意知曲线C上的点到F(1,0)的距离与到直线x=-1的距离相等.
可确定其轨迹是抛物线,即可求出其方程为y2=4x.
(2)设过点M的直线方程为x=ty+m,然后与抛物线方程联立,消去x,利用韦达定理表示出
,再证明其小于零即可.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com