有一项是符台题目要求的. 查看更多

 

题目列表(包括答案和解析)

有一项是符合题目要求的.

的值为                                      (   )

A.      B.-      C.      D.-      

查看答案和解析>>

(2006•丰台区一模)在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),满足向量
AnAn+1
与向量
BnCn
共线,且点列{Bn}在斜率为6的直线上,n=1,2,3,….
(Ⅰ)证明数列{bn}是等差数列;
(Ⅱ)试用a1,b1与n表示an(n≥2);
(Ⅲ)设a1=a,b1=-a,在a6与a7两项中至少有一项是数列{an}的最小项,试求实数 a的取值范围.

查看答案和解析>>

在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),满足向量
AnAn+1
与向量
BnCn
平行,并且点列{Bn}在斜率为6的同一直线上,n=1,2,3,….
(1)证明:数列{bn}是等差数列;
(2)试用a1,b1与n表示an(n≥2);
(3)设a1=a,b1=-a,是否存在这样的实数a,使得在a6与a7两项中至少有一项是数列{an}的最小项?若存在,请求出实数a的取值范围;若不存在,请说明理由;
(4)若a1=b1=3,对于区间[0,1]上的任意λ,总存在不小于2的自然数k,当n≥k时,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn是{an}的前n项和.
(1)当n≥2时,用a与n表示an与Sn
(2)若在S6与S7两项中至少有一项是Sn的最小值,试求a的取值范围;
(3)若a为正整数,在(2)的条件下,设Sn取S6为最小值的概率是p1,Sn取S7为最小值的概率是p2,比较p1与p2的大小.

查看答案和解析>>

数列{an}的通项公式an=3n2-(a+9)n+6+2a(a∈R),若a6与a7两项中至少有一项是{an}的最小值,则实数a的取值范围是
(24,36)
(24,36)

查看答案和解析>>

学科网(Zxxk.Com)

1.B       2.A      3.C       4.B       5.A      6.D      7.B       8.C       9.C       1 0.B 学科网(Zxxk.Com)

11.B     12.D学科网(Zxxk.Com)

1.学科网(Zxxk.Com)

2.学科网(Zxxk.Com)

3.是方程的根,或8,又学科网(Zxxk.Com)

       学科网(Zxxk.Com)

4.学科网(Zxxk.Com)

5.画出可行域,如图,可看为区域内的点与(0,0)连线的斜率,学科网(Zxxk.Com)

       学科网(Zxxk.Com)

6.

7.在中,,在中,

中,,在中,

8.的图象如图所示

       的解集为

9.由点的轨迹是以为焦点的双曲线一支.

10.由独立重复试验的概率

11.设,圆为最长弦为直径,最短弦的中点为

12.几何体的表面积是三个圆心角为、半径为1的扇形面积与半径为1的球面积的之和,即表面积为

二、

13.平方得

      

14.的系数

15.1.互为反函数,

       令

      

16.0或 ,设点的横坐标为点处的切线斜率为,由夹角公式得,即

,得,矛盾

三、

17.(1),由,得,消去

             

             

(2)

      

      

      

       时,的最大值为时,的最大值为2.

18.(1)从3种服装商品、2种家电商品,4种日用商品中,选出3种商品,一共有种不同的选法.选出的3种商品中,没有日用商品的选法有种。所以选出的3种商品至少有一种日用商品的概率为

(2)假设商场将中奖奖金数额定为元,则顾客在三欢抽奖中所获得的奖金总额是一个随机变量,其所有可能的取值为

      

      

      

      

于是顾客在三次抽奖中所获得的奖金总额的期望值是

要使促销方案对商场有利,因此应有

故商场应将中奖奖金数额最高定为120元.才能使促销方案对自己有利.

19.(1)证明:

连接

,又

              即        平面

(2)方法1   取的中点的中点的中点,或其补角是所成的角.

           ∴连接斜边上的中线,

             

              在中,由余弦定理得

           ∴直线所成的角为

(3)方法l

       平面,过,连接,

              在平面上的射影,由三垂线定理得

              是二面角的平面角,

              ,又

中,

∴二面角

(2)方法2

建立空间直角坐标系

∴直线所成的角为

(3)方法2

在坐标系中,平面的法向量

设平面的法向量,则

求得

∴二面角

20.是首项为、公比为的等比数列,

      

(1)当时,

      

      

      

       两式相减得

      

      

(2)

时,,对,而

时,成立,即

时,

递增,时,

时,成立,即

综上得,的取值范围是

21.(1)设

由抛物线定义,

上,,又

         舍去.

∴椭圆的方程为

       (2)∵直线的方程为为菱形,

              ,设直线的方程为

              在椭圆上,

             

              设,则

             

的中点坐标为,由为菱形可知,点在直线上,

           ∴直线的方程为,即

22.(1),切线的议程为,即.

              令,令

             

             

             

       (2)由,即

              于是

              当且仅当,即时,等号成立.

              时,时,

       (3)

              由

              当,即时,

              当,即时,

              时,取得最小值,最小值为

              由,得,此时,最小值为

 


同步练习册答案