(1)求时的概率, 查看更多

 

题目列表(包括答案和解析)

 

内的概率为.

(i)当点C在圆周上运动时,求的最大值;

(ii)记平面与平面所成的角为,当取最大值时,

的值。

查看答案和解析>>

题干

概率为

(i)当点C在圆周上运动时,求的最大值;

(ii)记平面与平面所成的角为,当取最大值时,求的值。

查看答案和解析>>

题干

概率为

(i)当点C在圆周上运动时,求的最大值;

(ii)记平面与平面所成的角为,当取最大值时,求的值。

查看答案和解析>>

设事件A发生的概率为P,若在A发生的条件下B发生的概率为P′,则由A产生B的概率为PP′,根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3,…,100,共101站,设棋子跳到第n站的概率为Pn,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束.已知硬币出现正反面的概率都为
12

(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

设事件A发生的概率为P,若在A发生的条件下B发生的概率为P′,则由A产生B的概率为PP′,根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3,…,100,共101站,设棋子跳到第n站的概率为Pn,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束.已知硬币出现正反面的概率都为数学公式
(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

 

一、选择题:本大题共有8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个是符合题目要求的。

1―8 BDCAABCB

二、填空题:本大题共有6个小题,每小题5分,共30分;请把答案写在相应的位置上。

9.    10.    11.7    12.    13.    14.

三、解答题:本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤。

15.(本题满分13分)

解:

   (1)

   (2)由(1)知,

16.(本题满分13分)

    解:(1)表示经过操作以后袋中只有1个红球,有两种情形出现

①先从中取出红和白,再从中取一白到

②先从中取出红球,再从中取一红球到

。 ………………7分

   (2)同(1)中计算方法可知:

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本题满分13分)

解法1:(1)连结MA、B1M,过M作MN⊥B1M,且MN交CC1点N,

又∵平面ABC⊥平面BB1C1C

平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C

∵MN平面BB1C1C

∴MN⊥AM。

∵AM∩B1M=M,

∴MN⊥平面AMB1,∴MN⊥AB1

∵在Rt△B1BM与Rt△MCN中,

即N为C1C四等分点(靠近点C)。  ……………………6分

   (2)过点M作ME⊥AB1,垂足为R,连结EN,

由(1)知MN⊥平面AMB1

∴EN⊥AB1

∴∠MEN为二面角M―AB1―N的平面角。

∵正三棱柱ABC―A1B1C1,BB1=BC=2,

∴N点是C1C的四等分点(靠近点C)。  ………………6分

   (2)∵AM⊥BC,平面ABC⊥平面BB1C1C

且平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C

∵MN平面BB1C1,∴AM⊥MN,

∵MN⊥AB1,∴MN⊥平面AMB1

 

18.(本题满分13分)

解:(1)

   (2)当

   (3)令

     ①

     ②

①―②得   ………………13分

19.(本题满分14分)

解:(1)设椭圆C的方程:

   (2)由

        ①

由①式得

20.(本题满分14分)

解:(1)

   (2)证明:①在(1)的过程中可知

②假设在

综合①②可知:   ………………9分

   (3)由变形为: