11.椭圆的焦点在轴上.则 . 查看更多

 

题目列表(包括答案和解析)

给出下列5个命题:
①0<a≤是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U>1+a>
⑤函数f(x)=(x≠kπ+),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是   

查看答案和解析>>

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

(2011•自贡三模)给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆叙道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2cl和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有a1-c1=a2-c2
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若a∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

⑤函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2.
其中所有真命题的代号有
②④
②④

查看答案和解析>>

一、选择题(4′×10=40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空题(4′×4=16分)

11.       12.          13.       14.

三、解答题(共44分)

15.①解:原不等式可化为:  ………………………2′

www.ks5u.com   作根轴图:

 

 

 

                                                     ………………………4′

   可得原不等式的解集为:  ………………………6′

②解:直线的斜率  ………………………2′

∵直线与该直线垂直

              ………………………4′

的方程为: ………………………5′

为所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

当且仅当:………………………6′

       时,………………………7′

17.解:将代入中变形整理得:

………………………2′

首先………………………3′

   

由题意得:

解得:(舍去)………………………5′

由弦长公式得:………………………7′

18.解①设双曲线的实半轴,虚半轴分别为

由题得:   ∴………………………1′

于是可设双曲线方程为:………………………2′

将点代入可得:

∴该双曲线的方程为:………………………4′

②直线方程可化为:

则它所过定点代入双曲线方程:得:

………………………6′

又由

…………7′

……………………8′

19.解:①设中心关于的对称点为

解得:

,又点在左准线上,

的方程为:……………………4′

②设

成等差数列,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

……………………9′

∴椭圆的方程为:

 

 

 


同步练习册答案