有一项是符合题目要求的. 查看更多

 

题目列表(包括答案和解析)

有一项是符合题目要求的.

的值为                                      (   )

A.      B.-      C.      D.-      

查看答案和解析>>

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:

(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;

(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

 

查看答案和解析>>

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:
(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;
(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

查看答案和解析>>

一次高中数学期末考试,选择题共有个,每个选择题给出了四个选项,在给出的四个选项中,只有一项是符合题目要求的. 评分标准规定:对于每个选择题,不选或多选或错选得分,选对得分.在这次考试的选择题部分,某考生比较熟悉其中的个题,该考生做对了这个题.其余个题,有一个题,因全然不理解题意,该考生在给出的四个选项中,随机选了一个;有一个题给出的四个选项,可判断有一个选项不符合题目要求,该考生在剩下的三个选项中,随机选了一个;还有两个题,每个题给出的四个选项,可判断有两个选项不符合题目要求,对于这两个题,该考生都是在剩下的两个选项中,随机选了一个选项.请你根据上述信息,解决下列问题:
(Ⅰ)在这次考试中,求该考生选择题部分得分的概率;
(Ⅱ)在这次考试中,设该考生选择题部分的得分为,求的数学期望.

查看答案和解析>>

考试结束,请将本试题卷和答题卡一并上交。

一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.设全集,集合,则图中的阴影部分表示的集合为

A.                  B.

C.                 D.

2.已知非零向量满足,那么向量与向量的夹角为

A.    B.    C.    D.

3.的展开式中第三项的系数是

       A.               B.               C.15              D.

4.圆与直线相切于点,则直线的方程为

A.   B.   C.  D.

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 学科网(Zxxk.Com)

11.A     12.D学科网(Zxxk.Com)

【解析】学科网(Zxxk.Com)

1.,所以选B.学科网(Zxxk.Com)

2.的系数是,所以选B.学科网(Zxxk.Com)

3.,所以选学科网(Zxxk.Com)

4.为钝角或,所以选C学科网(Zxxk.Com)

5.,所以选C.学科网(Zxxk.Com)

6.,所以选B.学科网(Zxxk.Com)

7.,所以选D.学科网(Zxxk.Com)

8.化为,所以选B.学科网(Zxxk.Com)

9.将左移个单位得,所以选A.学科网(Zxxk.Com)

10.直线与椭圆有公共点,所以选B.

11.如图,设,则

       ,

       ,从而,因此与底面所成角的正弦值等于.所以选A.

12.画可行域 可知符合条件的点是:共6个点,故,所以选D.

二、

13.185.

14.60.

15.,由,得

      

16..如图:

      

如图,可设,又

       当面积最大时,.点到直线的距离为

三、

17.(1)由三角函数的定义知:

       (2)

             

             

             

18.(1)设两年后出口额恰好达到危机前出口额的事件为,则

       (2)设两年后出口额超过危机前出口额的事件为,则

19.(1)设交于点

             

             

             

              从而,即,又,且

              平面为正三角形,的中点,

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              设的中点,连接,则

              平面,过点,连接,则

              为二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              综上:

21.(1)的解集为(1,3)

           ∴1和3是的两根且

 

              时,时,

              处取得极小值

                                         ③

        由式①、②、③联立得:

       

       (2)

           ∴当时,上单调递减,

        当时,

              当时,在[2,3]上单调递增,

22.(1)由

           ∴椭圆的方程为:

(2)由

      

       又

设直线的方程为:

              由此得.                                   ①

              设与椭圆的交点为,则

              由

              ,整理得

              ,整理得

              时,上式不成立,          ②

        由式①、②得

       

        ∴取值范围是