题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
一、
1.C 2.C 3.C 4.D 5.C 6.B 7.C 8.A 9.D 10.C 
11.B 12.B
【解析】
11.提示:设曲线
在点
处切线倾斜角为
,则
,由
,得
,故
,所以
,故选B.
12.提示:整形结合.
二、
13.
14.
15.3 16.①③
三、
17.解:(1)


的单调递增区间为
(2)




18.(1)设乙、丙各自回答对的概率分别是
、
,根据题意得:
,解得
(2)
.
19.解:(1)
的解集有且只有一个元素
或
又由
得
当
时,
;
当
时,

(2)
①
②
由式①-或②得
.
20.解法一:

(1)设
交
于点
平面
.
作
于点
,连接
,则由三垂线定理知:
是二面角
的平面角.
由已知得
,
,
∴二面角
的大小的60°.
(2)当
是
中点时,有
平面
.
证明:取
的中点
,连接
、
,则
,
,故平面
即平面
.
又
平面
,
平面
.
解法二:由已知条件,以
为原点,以
、
、
为
轴、
轴、
轴建立空间直角坐标系,则

(1)
,
,设平面
的一个法向量为
,
则
取
设平面
的一个法向量为
,则
取
.
二面角
的大小为60°.
(2)令
,则
,
,
由已知,
,要使
平面
,只需
,即
则有
,得
当
是
中点时,有
平面
.
21.解:(1)① 当直线
垂直于
轴时,则此时直线方程为
,
与圆的两个交点坐标为
和
,其距离为
,满足题意.
② 若直线
不垂直于
轴,设其方程
,即
设圆心到此直线的距离为
,则
,得
,
此时所求直线方程为
综上所述,所求直线为
或
.
(2)设点
的坐标为
点坐标为
,则
点坐标是

即
又
由已知,直线
轴,所以,
,
点的轨迹议程是
,
轨迹是焦点坐标为
,长轴为8的椭圆,并去掉
两点.
22.解:
,
(1)由题意:
解得
.
(2)方程
的叛别式
,
① 当
,即
时,
,
在
内恒成立,此时
在
为增函数;
② 当
,即
或
时,
要使
在
内为增函数,只需在
内有
即可,
设
,
由
得
,所以
.
由①②可知,若
在
内为增函数,则
的取值范围是
.
www.ks5u.com
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com