22. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

一、学科网(Zxxk.Com)

1.C       2.C       3.C       4.D      5.C       6.B       7.C       8.A      9.D      10.C 学科网(Zxxk.Com)

11.B     12.B学科网(Zxxk.Com)

【解析】学科网(Zxxk.Com)

11.提示:设曲线在点处切线倾斜角为,则,由,得,故,所以,故选B.学科网(Zxxk.Com)

12.提示:整形结合.学科网(Zxxk.Com)

二、学科网(Zxxk.Com)

13.          14.          15.3            16.①③学科网(Zxxk.Com)

三、学科网(Zxxk.Com)

17.解:(1)学科网(Zxxk.Com)

             

              的单调递增区间为

       (2)

             

             

             

18.(1)设乙、丙各自回答对的概率分别是,根据题意得:

              ,解得

              (2)

19.解:(1)的解集有且只有一个元素

             

              又由

              当时,

              当时,

             

       (2)                   ①

                    ②

        由式①-或②得

             

20.解法一:

      

(1)设于点

              平面

于点,连接,则由三垂线定理知:是二面角的平面角.

由已知得

∴二面角的大小的60°.

       (2)当中点时,有平面

              证明:取的中点,连接,则

              ,故平面即平面

              平面

              平面

解法二:由已知条件,以为原点,以轴、轴、轴建立空间直角坐标系,则

             

       (1)

              ,设平面的一个法向量为

设平面的一个法向量为,则

二面角的大小为60°.

(2)令,则

      

       由已知,,要使平面,只需,即

则有,得中点时,有平面

 

21.解:(1)① 当直线垂直于轴时,则此时直线方程为

              与圆的两个交点坐标为,其距离为,满足题意.

           ② 若直线不垂直于轴,设其方程,即

              设圆心到此直线的距离为,则,得

             

              此时所求直线方程为

              综上所述,所求直线为

       (2)设点的坐标为点坐标为,则点坐标是

             

              即

              又由已知,直线轴,所以,

              点的轨迹议程是

轨迹是焦点坐标为,长轴为8的椭圆,并去掉两点.

22.解:

       (1)由题意:      解得

       (2)方程的叛别式

① 当,即时,内恒成立,此时为增函数;

② 当,即时,

要使内为增函数,只需在内有即可,

,所以

由①②可知,若内为增函数,则的取值范围是

www.ks5u.com

 

 


同步练习册答案