11.已知椭圆与双曲线的离心率分别为..且.是方程的两根.则= .= . 查看更多

 

题目列表(包括答案和解析)

已知椭圆与双曲线有相同的焦点F1,F2,P是两曲线的一个公共点,又分别是两曲线的离心率,PF1PF2,的最小值为( )

A B4 C D9

 

查看答案和解析>>

已知椭圆与双曲线有相同的焦点F1,F2,点P是两曲线的一个公共点,又分别是两曲线的离心率,若PF1PF2,则的最小值为(  )

A. B.4 C. D.9

查看答案和解析>>

已知椭圆与双曲线有相同的焦点F1,F2,点P是两曲线的一个公共点,又分别是两曲线的离心率,若PF1PF2,则的最小值为(  )
A.B.4 C.D.9

查看答案和解析>>

椭圆与双曲线有许多优美的对偶性质,对于椭圆有如下命题:已知A、F、B分别是优美椭圆
x2
a2
+
y2
b2
=1(a>b>0)(离心率为黄金分割比
5
-1
2
的椭圆)的左顶点、右焦点和上顶点,则AB⊥BF.那么对于双曲线则有如下命题:已知A、F、B分别是优美双曲线
x2
a2
-
y2
b2
=1(a>b>0)(离心率为黄金分割比的倒数
5
+1
2
的双曲线)的左顶点、右焦点和其虚轴的上端点,则有(  )

查看答案和解析>>

椭圆与双曲线有许多优美的对偶性质,对于椭圆有如下命题:已知A、F、B分别是优美椭圆+=1(a>b>0)(离心率为黄金分割比的椭圆)的左顶点、右焦点和上顶点,则AB⊥BF.那么对于双曲线则有如下命题:已知A、F、B分别是优美双曲线-=1(a>b>0)(离心率为黄金分割比的倒数的双曲线)的左顶点、右焦点和其虚轴的上端点,则有( )
A.AB⊥BF
B.AF⊥BF
C.AB⊥AF
D.AB∥BF

查看答案和解析>>

一、选择题(4′×10=40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空题(4′×4=16分)

11.       12.          13.       14.

三、解答题(共44分)

15.①解:原不等式可化为:  ………………………2′

   作根轴图:

 

 

 

                                                      ………………………4′

  

可得原不等式的解集为:  ………………………6′

②解:直线的斜率  ………………………2′

∵直线与该直线垂直

   则的方程为: ………………………4′

为所求………………………6′

16.解:∵  则………………………1′

∴有………………………3′

        ………………………4′

     ………………………5′

     

当且仅当:………………………5′

       亦:时取等号

所以:当时,………………………7′

17.解:将代入中变形整理得:

………………………2′

首先………………………3′

   

由题意得:

解得:(舍去)………………………6′

由弦长公式得:………………………8′

18.解①设双曲线的实半轴,虚半轴分别为

则有:   ∴………………………1′

于是可设双曲线方程为:  ①或 ②………………………3′

将点代入①求得:

将点代入②求得: (舍去) ………………………4′

,

∴双曲线的方程为:………………………5′

②由①解得:,,,焦点在轴上………………………6′

∴双曲线的准线方程为:………………………7′

渐近线方程为: ………………………8′

19.解:①设为椭圆的半焦距,则,

   ∵  ∴  ∴………………………1′

代入,可求得

  ∵  ∴

  又………………………3′

………………………5′

从而

∴离心率………………………6′

②由抛物线的通径

得抛物线方程为,其焦点为………………………7′

∴椭圆的左焦点

由①解得:

………………………8′

∴该椭圆方程为:………………………9′

③      

 

 


同步练习册答案