题目列表(包括答案和解析)
(本题满分8分)
如图,在正方体
中,
是
的中点,
求证:![]()
(1)
∥平面
;
(2)求异面直线
与
所成角的余弦值.
(本题满分8分)已知四棱锥P-ABCD
的直观图与三视图如图所示
(1)求四棱锥P-ABCD的体
积;
(2)若E为侧棱PC的中点,求证:PA//平面BDE.
![]()
(本题满分
8分)
求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且与直线2x + y + 5 = 0平行的直线方程。
(本题满分8分)已知
,函数
.
(Ⅰ)求
的极值(用含
的式子表示);
(Ⅱ)若
的图象与
轴有3个不同交点,求
的取值范围.
(本题满分8分)已知函数
。
(1)求
的振幅和最小正周期;
(2)求当
时,函数
的值域;
(3)当
时,求
的单调递减区间。
一、选择题(4′×10=40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
D
B
C
D
C
A
A
B
A
三、填空题(4′×4=16分)
11.
12.
13.
14.
三、解答题(共44分)
15.①解:原不等式可化为:
………………………2′
作根轴图:
………………………4′
可得原不等式的解集为:
………………………6′
②解:直线
的斜率
………………………2′
∵直线
与该直线垂直
∴
则
的方程为:
………………………4′
即
为所求………………………6′
16.解:∵
则
,
且
………………………1′
∴有
………………………3′
………………………4′
………………………5′

当且仅当:
即
………………………5′
亦:
时取等号
所以:当
时,
………………………7′
17.解:将
代入
中变形整理得:
………………………2′
首先
且
………………………3′
设

由题意得:
解得:
或
(舍去)………………………6′
由弦长公式得:
………………………8′
18.解①设双曲线的实半轴,虚半轴分别为
,

则有:
∴
………………………1′
于是可设双曲线方程为:
①或
②………………………3′
将点
代入①求得:
将点
代入②求得:
(舍去) ………………………4′
∴
, 
∴双曲线的方程为:
………………………5′
②由①解得:
,
,
,焦点在
轴上………………………6′
∴双曲线的准线方程为:
………………………7′
渐近线方程为:
………………………8′
19.解:①设
为椭圆的半焦距,则
,
∵
∴
∴
………………………1′
将
代入
,可求得
∵
∴
即
又
、
………………………3′
∴
,
∵
………………………5′
∴
从而
∴离心率
………………………6′
②由抛物线的通径
得抛物线方程为
,其焦点为
………………………7′
∴椭圆的左焦点
∴
由①解得:
∴
………………………8′
∴该椭圆方程为:
………………………9′
③
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com