已知函数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=4sin(2x-
π
3
)+1
,给定条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p是q的充分条件,则实数m的取值范围为
 

查看答案和解析>>

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(
52
))的值是
 

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

8、已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为(  )

查看答案和解析>>

已知函数f(x)=
3-x,x>0
x2-1.x≤0
,则f[f(-2)]=
 

查看答案和解析>>

 

一.选择题:本大题共12小题,每小题5分,共60分。

(1)A       (2)B        (3)B      (4)A    (5)D       (6)D 

(7)C       (8)C        (9)A     (10)C    (11)A      (12)B

 

二.填空题:本大题共4小题,每小题5分,共20分。

(13)        (14)2          (15)       (16)44

三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分10分)

(Ⅰ)解法一:由正弦定理得.

故     

又     

故     

即     

故      .

因为   

故     

      又      为三角形的内角,

所以    .                    ………………………5分

解法二:由余弦定理得  .

      将上式代入    整理得

      故      ,  

又      为三角形内角,

所以    .                    ………………………5分

(Ⅱ)解:因为

故     

由已知 

 

又因为  .

得     

所以   

解得    .    ………………………………………………10分

 

(18)(本小题满分12分)

 

(Ⅰ)证明:

             ∵

             ∴

             又∵底面是正方形,

       ∴

             又∵

       ∴

       又∵

       ∴平面平面.    ………………………………………6分

(Ⅱ)解法一:如图建立空间直角坐标系

,则,在中,.

的中点,

        设是平面的一个法向量.

则由 可求得.

由(Ⅰ)知是平面的一个法向量,

,即.

∴二面角的大小为. ………………………………………12分

  解法二:

         设,则

中,.

,连接,过

连结,由(Ⅰ)知.

在面上的射影为

为二面角的平面角.

中,

.

.

即二面角的大小为. …………………………………12分

 

(19)(本小题满分12分)

解:(Ⅰ)设取到的4个球全是白球的概率

.          …………………………………6分

(Ⅱ)设取到的4个球中红球个数不少于白球个数的概率

. ………………12分

 

(20)(本小题满分12分)

解:(I)设等比数列的首项为,公比为

依题意,有

代入, 得

.               …………………………………2分

解之得  …………………6分

              …………………………………8分

(II)又单调递减,∴.   …………………………………9分

. …………………………………10分

,即

故使成立的正整数n的最小值为8.………………………12分

 

(21)(本小题满分12分)

(Ⅰ)解:设双曲线方程为

及勾股定理得

由双曲线定义得

.               ………………………………………5分

(Ⅱ),双曲线的两渐近线方程为

由题意,设的方程为轴的交点为

交于点交于点

;由

故双曲线方程为.         ………………………………12分

 

(22)(本小题满分12分)

解:(Ⅰ)

又因为函数上为增函数,

  上恒成立,等价于

  上恒成立.

故当且仅当时取等号,而

  的最小值为.         ………………………………………6分

(Ⅱ)由已知得:函数为奇函数,

  ,  ………………………………7分

.

切点为,其中

则切线的方程为:   ……………………8分

.

,由题意知,

从而.

.                    ………………………………………12分

 


同步练习册答案