(Ⅱ)若.且函数在上单调递增.试求的范围. 得分评卷人 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=ln|x|-x2+ax.
(Ⅰ)求函数f(x)的导函数f′(x);
(Ⅱ)若x1、x2为函数f(x)的两个极值点,且,试求函数f(x)的单调递增区间;
(Ⅲ)设函数f(x)在点C(x,f(x))(x为非零常数)处的切线为l,若函数f(x)图象上的点都不在直线l的上方,试探求x的取值范围.

查看答案和解析>>

设函数f(x)=ln|x|-x2+ax.
(Ⅰ)求函数f(x)的导函数f′(x);
(Ⅱ)若x1、x2为函数f(x)的两个极值点,且数学公式,试求函数f(x)的单调递增区间;
(Ⅲ)设函数f(x)在点C(x0,f(x0))(x0为非零常数)处的切线为l,若函数f(x)图象上的点都不在直线l的上方,试探求x0的取值范围.

查看答案和解析>>

已知函数f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)试就实数a的不同取值,写出该函数的单调递增区间;
(Ⅱ)已知当x>0时,函数在(0,
6
)
上单调递减,在(
6
,+∞)
上单调递增,求a的值并写出函数F(x)=
3
f(x)
的解析式;
(Ⅲ)记(Ⅱ)中的函数F(x)=
3
f(x)
的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax3+
1
2
sinθx2-2x+c的图象经过点(1,
37
6
)
,且在区间(-2,1)上单调递减,在[1,+∞)上单调递增.
(1)证明sinθ=1;
(2)求f(x)的解析式;
(3)若对于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤
45
2
恒成立,试问:这样的m是否存在,若存在,请求出m的范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x(x-a)(x-b)(a,b∈R),函数f(x)的导函数f′(x).
(Ⅰ)若a=b=1,求函数f(x)的单调递增区间;
(Ⅱ)若b=0,不等式2xlnx≤f′(x)+4ax+1对于任意的正数x都成立,求实数a的取值范围;
(Ⅲ)若0<a<b,a+b<2
3
,且函数f(x)在x=s和x=t处取得极值,试证明:对于曲线上的点A(s,f(s)),B(t,f(t)),向量
OA
OB
不可能垂直(O为坐标原点).

查看答案和解析>>


同步练习册答案