所以=, . 查看更多

 

题目列表(包括答案和解析)

(1)选修4-2:矩阵与变换
已知矩阵M=(
2a
2b
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
x=sinα
y=2cos2α-2

(a为餓),曲线D的鍵标方程为ρsin(θ-
π
4
)=-
3
2
2

(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的结论求函数y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(1)已知曲线C的极坐标方程为ρ2=
36
4cos2θ+9sin2θ

(Ⅰ)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值
(2)已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(I)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(II)求实数m的取值范围.

查看答案和解析>>

(1)设函数f(x)=
-1(x<0)
0(x=0)
1(x>0)
,则当a≠b时,
a+b+(a-b)f(a-b)
2
的值应为
D
D

A.|a|B.|b|C.a,b中的较小数     D.a,b中的较大数
(2)某大学的信息中心A与大学各部门、各院系B、C、D、E、F、G、H、I之间拟建立信息联网工程,实际测算的费用如图所示(单位万元),请观察图形,可以不建部分网线,而使得中心与各部门、各院系都能连通(直接或中转),则最少的建网费用是
13
13
万元.

查看答案和解析>>

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

(1)用坐标法证明余弦定理:已知在△ABC中,角A、B、C所对的边分别为a、b、c,求证:a2=b2+c2-2bccosA;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,已知2b=a+c,求角B的最大值;
(3)如果三个正实数a,b,c满足a2=b2+c2-2bccosA,A∈(0,π),那么是否存在以a,b,c为三边的三角形?请说明理由.

查看答案和解析>>


同步练习册答案