题目列表(包括答案和解析)
已知椭圆
的离心率为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A、B两点。
(1)求椭圆的标准方程;
(2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),求证:![]()
已知椭圆
的离心率为
,且经过点
. 过它的两个焦点
,
分别作直线
与
,
交椭圆于A、B两点,
交椭圆于C、D两点,且
.
![]()
(1)求椭圆的标准方程;
(2)求四边形
的面积
的取值范围.
已知椭圆
的离心率为
,
![]()
轴被抛物线
截得的线段长等于
的长半轴长.
(1)求
的方程;
(2)设
与
轴的交点为
,过坐标原点
的直线![]()
与
相交于
两点,直线
分别与
相交于
.
①证明:
为定值;
②记
的面积为
,试把
表示成
的函数,并求
的最大值.
已知椭圆![]()
的离心率为
,两焦点之间的距离为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右顶点作直线交抛物线
于A、B两点,
(1)求证:OA⊥OB;
(2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.
已知椭圆
的离心率为
,其左、右焦点分别为
,点
是椭圆上一点,且
,
(
为坐标原点).
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
的动直线
交椭圆于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com