题目列表(包括答案和解析)
已知曲线C:
(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当
解得
,所以m的取值范围是![]()
(2)当m=4时,曲线C的方程为
,点A,B的坐标分别为
,
由
,得![]()
因为直线与曲线C交于不同的两点,所以![]()
即![]()
设点M,N的坐标分别为
,则![]()
![]()
直线BM的方程为
,点G的坐标为![]()
因为直线AN和直线AG的斜率分别为![]()
所以
![]()
![]()
即
,故A,G,N三点共线。
函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
在点(ak,ak2)处的切线方程为:
当
时,解得
,
所以
。
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
如图,已知点
和单位圆上半部分上的动点B.
(1)若
,求向量
;
(2)求
的最大值.
![]()
【解析】对于这样的向量的坐标和模最值的求解,利用建立直角坐标系的方法可知。
第一问中,依题意,
,![]()
,![]()
因为
,所以
,即
,
解得
,所以![]()
第二问中,
结合三角函数的性质得到最值。
(1)依题意,
,
(不含1个或2个端点也对)
,
(写出1个即可)
因为
,所以
,即
,
解得
,所以
.-
(2)
,![]()
当
时,
取得最大值,![]()
已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函数
的图象与
轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为
,令
,解得
,可知当极大值为
,极小值为
.由
,解得
,由
,解得
,所以
或
,选A.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com