题目列表(包括答案和解析)
| 3 |
| 2 |
| 3 |
| 4 |
| A、函数f(x)是周期函数 | ||
B、函数f(x)的图象关于点(-
| ||
| C、函数f(x)是偶函数 | ||
D、函数f(x)的图象关于直线x=
|
(本题满分14分) 在平面直角坐标系
中,已知圆心在直线
上,半径为
的圆C经过坐标原点O.
(1)求圆C的方程;
(2)是否存在直线
与圆C交于不同的两点A、B,且线段AB的中点恰在抛物线
上,若
存在请求出m的值,若
不存在请说明理由.
已知抛物线
,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(1)证明:直线
的斜率互为相反数;
(2)求
面积的最小值;
(3)当点
的坐标为
,
且
.根据(1)(2)推测并回答下列问题(不必说明理由):①直线
的斜率是否互为相反数? ②
面积的最小值是多少?
已知函数
,
,k为非零实数.
(Ⅰ)设t=k2,若函数f(x),g(x)在区间(0,+∞)上单调性相同,求k的取值范围;
(Ⅱ)是否存在正实数k,都能找到t∈[1,2],使得关于x的方程f(x)=g(x)在[1,5]上有且仅有一个实数根,且在[-5,-1]上至多有一个实数根.若存在,请求出所有k的值的集合;若不存在,请说明理由.
【解析】本试题考查了运用导数来研究函数的单调性,并求解参数的取值范围。与此同时还能对于方程解的问题,转化为图像与图像的交点问题来长处理的数学思想的运用。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com