观测数据4041434344464748 查看更多

 

题目列表(包括答案和解析)

对具有线性相关关系的变量x,y,有一组观测数据(xi,yi)(i=1,2,…,8),其回归直线方程是:
y
=
1
6
x+a,且x1+x2+x3+…+x8=3(y1+y2+y3+…+y8)=6,则实数a的值是(  )
A、
1
16
B、
1
8
C、
1
4
D、
11
16

查看答案和解析>>

为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都为t,则下列说法正确的是(  )

查看答案和解析>>

已知两个变量x与y之间具有线性相关关系,5次试验的观测数据如下:
x 100 120 140 160 180
y 45 54 62 75 92
那么变量y关于x的回归直线方程只可能是(  )
A、
y
=0.575x-14.9
B、
y
=0.572x-13.9
C、
y
=0.575x-12.9
D、
y
=0.572x-14.9

查看答案和解析>>

某种产品的年销售量y和该年广告费用支出x有关,现收集了5组观测数据列于下表:
x/万元 2 4 5 6 8 参考数据:
5
i=1
x
2
i
=145
5
i=1
y
2
i
=13500
5
i=1
xiyi=1380
y/万件 30 40 60 50 70
现确定以广告费用支出x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
参考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
?
a
=
.
y
-
?
b
.
x
R2=1-
n
i=1
(yi-
?
y
i
)
2
n
i=1
(yi-
.
y
)
2
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi

(Ⅰ)作y和x的散点图,根据该图猜想它们之间是什么相关关系.
(Ⅱ)如果是线性相关关系,请用给出的最小二乘法公式求回归直线方程;否则说明它们之间更趋近于什么非线性相关关系.
(Ⅲ)假如2011年广告费用支出为10万元,请根据你得到的模型,预报该年的销售量y,并用R2的值说明解释变量对于预报变量变化的贡献率.

查看答案和解析>>

如图是根据变量x,y的观测数据(xi,yi)(i=1,2,…10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是(  )

查看答案和解析>>


同步练习册答案