题目列表(包括答案和解析)
| 5 |
| ||
| 21 |
| 2 |
| 7 |
(本小题满分14分)如图,△ABC的外接圆⊙
的半径为
,CD
⊙
所在的平面,BE//CD,CD=4,BC=2,且BE=1,
.
(1)求证:平面ADC
平面BCDE;
(2)求几何体ABCDE的体积;
(3)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为
?若存在,确定点M的位置,若不存在,请说明理由。
已知
,
,
分别为
三个内角
,
,
的对边,
.
(Ⅰ)求
;
(Ⅱ)若
=2,
的面积为
,求
,
.
【命题意图】本题主要考查正余弦定理应用,是简单题.
【解析】(Ⅰ)由
及正弦定理得
![]()
由于
,所以
,
又
,故
.
(Ⅱ)
的面积
=
=
,故
=4,
而
故
=8,解得
=2
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com