两边同乘以得. 查看更多

 

题目列表(包括答案和解析)

“等式两边都乘以同一个数,所得的结果仍是等式”的逆否命题是_________,原命题为_________命题;(填“真”或“假”)

查看答案和解析>>

把命题“等式两边都乘同一个数,所得结果仍是等式”改写成“若p则q”的形式,下列论述正确的是


  1. A.
    若在一个式子两端乘同一个数,则原式为等式,结果也是等式
  2. B.
    如果在等式两边所乘的是同一个数,那么所得结果是等式
  3. C.
    在一个式子两端乘同一个数,若原式是等式,则所得结果仍是等式
  4. D.
    以上结论都不正确

查看答案和解析>>

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4
k=1
xk=14
4
k=1
xk2=54,
4
k=1
yk=14,
4
k=1
xkyk=58

查看答案和解析>>

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4








k=1
xk=14
4








k=1
xk2=54,
4








k=1
yk=14,
4








k=1
xkyk=58

查看答案和解析>>

若数列an=(2n-1)×2n,求其前n项和为Sn=1×2+3×22+…+(2n-1)×2n时,可对上式左、右的两边同乘以2,得到2Sn=1×22+3×23+…+(2n-1)×2n+1,两式相减并整理后,求得Sn=(2n-3)×2n+1+6.试类比此方法,求得bn=n2×2n的前n项和Tn=
(n2-2n+3)×2n+1-6
(n2-2n+3)×2n+1-6

查看答案和解析>>


同步练习册答案