解:(1)直线方程为.圆心.半径. 查看更多

 

题目列表(包括答案和解析)

求圆心在直线上,且经过原点及点的圆的标准方程.

【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(),然后利用,得到,从而圆心,半径.可得原点 标准方程。

解:设圆心C的坐标为(),...........2分

,即

,解得........4分

所以圆心,半径...........8分

故圆C的标准方程为:.......10分

 

查看答案和解析>>

在解析几何里,圆心在点(x0,y0),半径是r(r>0)的圆的标准方程是(x-x02+(y-y02=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x0,y0),焦点在直线y=y0上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为
(x-x0)2
a2
+
(y-y0)2
b2
=1
(x-x0)2
a2
+
(y-y0)2
b2
=1

查看答案和解析>>

在解析几何里,圆心在点(x0,y0),半径是r(r>0)的圆的标准方程是(x-x02+(y-y02=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x0,y0),焦点在直线y=y0上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为______.

查看答案和解析>>

在解析几何里,圆心在点(x,y),半径是r(r>0)的圆的标准方程是(x-x2+(y-y2=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x,y),焦点在直线y=y上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为   

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>


同步练习册答案