D.若α⊥β.αβ=.mα,m⊥,则m⊥β 10.连掷两次骰子分别得到点数是m.n.则向量n-m>0的概率是 查看更多

 

题目列表(包括答案和解析)

(2009•泰安一模)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )

查看答案和解析>>

(2012•杭州二模)如图所示,A,B,C是圆O上的三点,CO的延长线与线段BA的延长线交于圆O外的点D,若
OC
=m
OA
+n
OB
,则m+n的取值范围是(  )

查看答案和解析>>

在下列关于点P,直线l、m与平面α、β的命题中,正确的是(  )

查看答案和解析>>

(2010•福建模拟)已知函数f(x)=(ax2+bx+c)ex在x=1处取得极小值,其图象过点A(0,1),且在点处切线的斜率为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.
(ⅰ)证明:当x>1时,函数f(x)不存在“保值区间”;
(ⅱ)函数f(x)是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.

查看答案和解析>>

7、若l,m是不同的空间直线,α,β是不重合的平面,则下列命题中为真命题的是(  )

查看答案和解析>>

一、选择题:1―5 BDACB  6―12ABACA CB

二、填空题13.2   14.  15.16.①⑧⑤ 或①③⑧ 或④⑧①或④①⑧

17.(1)解:在中  

                                                 2分

    4分

      …….6分

   (2)                            10分

18.解:(1)在正方体中,

分别为中点

  即平面

 到平面的距离即到平面的距离.               3分

    在平面中,连结

之距为                    

因此到平面的距离为……………6分

   (2)在四面体中,

    又底面三角形是正三角形,

    设之距为

      故与平面所成角的正  …………12分

另解向量法

19.解:(Ⅰ)设两项技术指标达标的概率分别为

由题意得:                  …………..…………..4分

  解得:,∴.   即,一个零件经过检测为合格品的概率为. ………. ……………………………….8分                     

(Ⅱ)任意抽出5个零件进行检查,其中至多3个零件是合格品的概率为

 ………………..12分                               

20.解:(1)

   ………………4分

   (2)由

        …………8分

   (3)   

21.解:(1)

                  2分

-1

(x)

-

0

+

0

-

(x)

极小值0

极大值

                                      6分

   (2)

      

                    8分

………….12分

22.解法一:(Ⅰ)设点,则,由得:

,化简得.……………….3分

(Ⅱ)(1)设直线的方程为:

,又

联立方程组,消去得:

……………………………………6分

得:

,整理得:

.……………………………………………………………9分

解法二:(Ⅰ)由得:

所以点的轨迹是抛物线,由题意,轨迹的方程为:

(Ⅱ)(1)由已知,得

则:.…………①

过点分别作准线的垂线,垂足分别为

则有:.…………②

所以点的轨迹是抛物线,由题意,轨迹的方程为:

(Ⅱ)(1)由已知,得

则:.…………①

过点分别作准线的垂线,垂足分别为

则有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

当且仅当,即时等号成立,所以最小值为.…………..12分


同步练习册答案