22.解:(1)依题意有.则.将点代入得.而...故, 查看更多

 

题目列表(包括答案和解析)

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>

阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(2)若△ABC的三个内角A,B,C满足cos2A+cox2C-cos2B=1,直接利用阅读材料及(1)中的结论试判断△ABC的形状.

查看答案和解析>>

阅读下面材料:
根据两角和与差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ…①
sin(α-β)=sinαcosβ-cosαsinβ…②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)若△ABC的三个内角A,B,C满足cos2A-cos2B=1-cos2C,试判断△ABC的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)

查看答案和解析>>

阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(2)若△ABC的三个内角A,B,C满足cos2A+cox2C-cos2B=1,直接利用阅读材料及(1)中的结论试判断△ABC的形状.

查看答案和解析>>

阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)

查看答案和解析>>


同步练习册答案