(Ⅱ)延长AD.BE相交于点F.连结PF.过点A作AH⊥PB于H.由(Ⅰ)知平面PBE⊥平面PAB.所以AH⊥平面PBE.在Rt△ABF中.因为∠BAF=60°.所以AF=2AB=2=AP.在等腰Rt△PAF中.取PF的中点G.连接AG.则AG⊥PF.连结HG.由三垂线定理的逆定理得.PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角. 查看更多

 

题目列表(包括答案和解析)

选修4-1:
如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>

选修4-1:
如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>

选修4-1:
如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>

选修4-1:
如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>

选修4-1:
如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>


同步练习册答案