解:设P在 底面ABC上的射影为O.则PO=2.且O是三角形ABC的中心.设底面边长为a,则 设侧棱为b则 斜高 .由面积法求 到侧面的距离 查看更多

 

题目列表(包括答案和解析)

14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>

在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有   

查看答案和解析>>

 如图,正三棱锥,DBC的中点, EAP的中点.P在底面△ABC内的射影为O,以O为坐标原点,ODOP所在直线分别为YZ轴建立如图所示的空间直角坐标系OXYZ

⑴ 写出点ABDE的坐标;

⑵ 用向量法求异面直线ADBE所成的角.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

精英家教网已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为(  )
A、
3
4
B、
5
4
C、
7
4
D、
3
4

查看答案和解析>>

已知三棱锥S-ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.
(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H-AB-C的平面角等于30°,SA=2
3
,求三棱锥S-ABC的体积.

查看答案和解析>>


同步练习册答案