又AB//DE.且AB=∴AB//FP.且AB=FP.∴ABPF为平行四边形.∴AF//BP. 查看更多

 

题目列表(包括答案和解析)

在四棱锥 A-BCDE中,底面是直角梯形,其中 BC∥DE,∠BCD=90°,且 DE=CD=
1
2
BC,又AB=AE=
1
2
BC,AC=AD,
求证:面ABE⊥面BCD.
精英家教网

查看答案和解析>>

如图, 在直角梯形ABCD中, AD∥BC, DA⊥AB, 又AD=3, AB=4, BC=,E在线段AB的延长线上. 曲线DE (含两端点) 上任意一点到A、B两点的距离之和都相等.

(1) 建立适当的坐标系, 并求出曲线DE的方程;

(2) 过点C能否作出一条与曲线DE相交且以C点为中心的弦? 如果不能, 请说明理由;

如果能, 请求出弦所在直线的方程.

查看答案和解析>>

在四棱锥 A-BCDE中,底面是直角梯形,其中 BC∥DE,∠BCD=90°,且 DE=CD=数学公式 BC,又AB=AE=数学公式BC,AC=AD,
求证:面ABE⊥面BCD.

查看答案和解析>>

(2013•嘉定区二模)如图,已知点F(0,1),直线m:y=-1,P为平面上的动点,过点P作m的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)(文)过轨迹C的准线与y轴的交点M作方向向量为
d
=(a,1)的直线m′与轨迹C交于不同两点A、B,问是否存在实数a使得FA⊥FB?若存在,求出a的范围;若不存在,请说明理由;
(3)(文)在问题(2)中,设线段AB的垂直平分线与y轴的交点为D(0,y0),求y0的取值范围.

查看答案和解析>>

(2013•嘉定区二模)如图,已知点F(0,1),直线m:y=-1,P为平面上的动点,过点P作m的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)(理)过轨迹C的准线与y轴的交点M作直线m′与轨迹C交于不同两点A、B,且线段AB的垂直平分线与y轴的交点为D(0,y0),求y0的取值范围;
(3)(理)对于(2)中的点A、B,在y轴上是否存在一点D,使得△ABD为等边三角形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案