已知函数. 查看更多

 

题目列表(包括答案和解析)

(本题满分15分)已知函数  且导数.

  (Ⅰ)试用含有的式子表示,并求单调区间;  (II)对于函数图象上的不同两点,如果在函数图象上存在点(其中)使得点处的切线,则称存在“伴侣切线”.特别地,当时,又称存在“中值伴侣切线”.试问:在函数上是否存在两点使得它存在“中值伴侣切线”,若存在,求出的坐标,若不存在,说明理由.

查看答案和解析>>

(本题满分15分)已知函数定义域为(),设.

(Ⅰ)试确定的取值范围,使得函数上为单调函数;

(Ⅱ)求证:

(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数 (其中为函数的导函数) .

查看答案和解析>>

(本题满分15分)已知函数.

(I)讨论上的奇偶性;

(II)当时,求函数在闭区间[-1,]上的最大值.

查看答案和解析>>

(本题满分15分)已知函数
(1)求函数的图像在点处的切线方程;
(2)若,且对任意恒成立,求的最大值;
(3)当时,证明

查看答案和解析>>

(本题满分15分)

已知函数

(Ⅰ)当时,试判断的单调性并给予证明;

(Ⅱ)若有两个极值点

(i) 求实数a的取值范围;

(ii)证明:。 (注:是自然对数的底数)

 

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由题意,有

.…………………………5分

,得

∴函数的单调增区间为 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)设数列的公比为,由.             …………………………………………………………… 4分

∴数列的通项公式为.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中点,连接.

分别是梯形的中位线

,又

∴面,又

.……………………… 7分

(II)由三视图知,是等腰直角三角形,

     连接

     在面AC1上的射影就是,∴

    

∴当的中点时,与平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由题意:.

为点M的轨迹方程.     ………………………………………… 4分

(Ⅱ)由题易知直线l1l2的斜率都存在,且不为0,不妨设,MN方程为 联立得:,设6ec8aac122bd4f6e

    ∴由抛物线定义知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程为,求得.  ………………………… 9分

.  ……………………………… 13分

当且仅当时取“=”,故四边形MRNQ的面积的最小值为32.………… 15分

22. 解:(Ⅰ),由题意得

所以                    ………………………………………………… 4分

(Ⅱ)证明:令

得:……………………………………………… 7分

(1)当时,,在,即上单调递增,此时.

          …………………………………………………………… 10分

(2)当时,,在,在,在,即上单调递增,在上单调递减,在上单调递增,或者,此时只要或者即可,得

.                        …………………………………………14分

由 (1) 、(2)得 .

∴综上所述,对于,使得成立. ………………15分