题目列表(包括答案和解析)
已知![]()
(1)求函数
在
上的最小值
(2)对一切的
恒成立,求实数a的取值范围
(3)证明对一切
,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
![]()
第二问中,
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
…………4分
(2)
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
已知函数
, 其中
.
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,求曲线
的单调区间与极值.
【解析】第一问中利用当
时,
,![]()
,得到切线方程
第二问中,![]()
![]()
对a分情况讨论,确定单调性和极值问题。
解: (1) 当
时,
,![]()
………………………….2分
切线方程为:
…………………………..5分
(2) ![]()
…….7
分
分类: 当
时, 很显然
的单调增区间为:
单调减区间:
,![]()
,
………… 11分
当
时
的单调减区间:
单调增区间:
,
![]()
, ![]()
在
中,满足
,
是
边上的一点.
(Ⅰ)若
,求向量
与向量
夹角的正弦值;
(Ⅱ)若
,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求
第二问因为
,
=m所以
,![]()
(1)当
时,则
=
(2)当
时,则
=![]()
第三问中,解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而![]()
运用三角函数求解。
(Ⅰ)解:设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为
,
=m所以
,![]()
(1)当
时,则
=
;-2分
(2)当
时,则
=
;--2分
(Ⅲ)解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而
---2分
=
=![]()
=
…………………………………2分
令
,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,![]()
已知点
为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点![]()
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线
的方程;
(II)试证明:在
轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为![]()
第二问中,设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得 ![]()
∵
,∴![]()
确定结论直线
与曲线
总有两个公共点.
然后设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
得到。
(1)设
为曲线
上的任意一点,则点
在圆
上,
∴
,曲线
的方程为
. ………………2分
(2)设点
的坐标为
,直线
的方程为
, ………………3分
代入曲线
的方程
,可得
,……5分
∵
,∴
,
∴直线
与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点
,
的坐标分别
,
,则
,
要使
被
轴平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
当
时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点
,使得
总能被
轴平分
设函数f(x)=
在[1,+∞
上为增函数.
(1)求正实数a的取值范围;
(2)比较
的大小,说明理由;
(3)求证:
(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:
,依题意得:
≥0对x∈[1,+∞
恒成立
∴ax-1≥0对x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上为增函数,
∴n≥2时:f(
)=
(3) ∵
∴![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com