(Ⅱ)若(其中是的导函数).求函数的最大值, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
1
3
x3-
1
2
(a+1)x2+ax,g(x)=f′(x)
是函数f(x)的导函数,其中实数a是不等1的常数.
(1)当a=0时,求f(x)的单调区间;
(2)设a>1,若函数f(x)有三个零点,求a的取值范围;
(3)若a>-1,求函数|g(x)|在区间[-1,1]内的最大值M(a)的表达式.

查看答案和解析>>

已知函数f(x)=x3-ax2-x+a,其中a为实数.
(1)求导数f′(x);
(2)若f′(-1)=0,求f(x)在[-2,3]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[3,+∞)上都是递增的,求a的取值范围.

查看答案和解析>>

已知函数f(x)=[ax2-(a+1)x+1]ex,a∈R.
(Ⅰ)若a=1,求函数y=f(x)在x=2处的切线方程;
(Ⅱ)若a∈[0,1],设h(x)=f(x)-f'(x)(其中f'(x)是函数f(x)的导函数),求函数h(x)在区间[0,1]的最大值;
(Ⅲ)若a=1,试判断当x>1时,方程f(x)=x实数根的个数.

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直线l与函数f(x)、g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1.
(Ⅰ)求直线l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(Ⅲ)当0<b<a时,比较:a+2af(a+b)与b+2af(2a)的大小.

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),
(I)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象的切点的横坐标为1,求直线l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)其中g′(x)是g(x)的导函数,求函数h(x)的最大值;
(Ⅲ)当0<a<b,求证:f(a+b)-f(2b)
a-b
2b

查看答案和解析>>


同步练习册答案