题目列表(包括答案和解析)
已知函数![]()
(1) 若函数
在
上单调,求
的值;
(2)若函数
在区间
上的最大值是
,求
的取值范围.
【解析】第一问,![]()
![]()
,
、
第二问中,![]()
由(1)知: 当
时,
上单调递增
满足条件当
时, ![]()
![]()
![]()
![]()
解: (1) ![]()
……3分
,
…………….7分
(2) ![]()
由(1)知: 当
时,
上单调递增
满足条件…………..10分
当
时,
且
![]()
…………13分
综上所述: ![]()
解关于
的不等式:
![]()
【解析】解:当
时,原不等式可变为
,即
(2分)
当
时,原不等式可变为
(5分) 若
时,
的解为
(7分)
若
时,
的解为
(9分) 若
时,
无解(10分) 若
时,
的解为
(12分综上所述
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为: ![]()
已知函数
在
处取得极值2.
⑴ 求函数
的解析式;
⑵ 若函数
在区间
上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数![]()
又f(x)在x=1处取得极值2,所以
,
所以![]()
第二问中,
因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得![]()
解:⑴ 求导
,又f(x)在x=1处取得极值2,所以
,即
,所以
…………6分
⑵ 因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得
, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得
…………12分
.综上所述,当
时,f(x)在(m,2m+1)上单调递增,当
时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是
或![]()
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
(1)
,
则
(4分)
(2)由(1)知
,则![]()
①当
时,
,令
或![]()
,![]()
在
上的值域为
(7分)
② 当
时,
a.若
,则
b.若
,则
在
上是单调减的![]()
在
上的值域为
c.若
则
在
上是单调增的![]()
在
上的值域为
(9分)
综上所述,当
时,
在
的值域为
当
时,
在
的值域为
(10分)
当
时,若![]()
![]()
时,
在
的值域为![]()
若![]()
![]()
时,
在
的值域为
(12分)
即 当
时,
在
的值域为![]()
当
时,
在
的值域为![]()
当
时,
在
的值域为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com