题目列表(包括答案和解析)
把函数
的图象按向量
平移得到函数
的图象.
(1)求函数
的解析式; (2)若
,证明:
.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
,便可以得到结论。第二问中,令
,然后求导,利用最小值大于零得到。
(1)解:设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 证明:令
,……6分
则
……8分
,∴
,∴
在
上单调递增.……10分
故
,即![]()
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
已知函数
,
.
(Ⅰ)若函数
依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在
处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数
,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
![]()
(2)不等式
,即
,即
.
转化为存在实数
,使对任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
设
,则.![]()
设
,则
,因为
,有
.
故
在区间
上是减函数。又![]()
故存在
,使得
.
当
时,有
,当
时,有
.
从而
在区间
上递增,在区间
上递减.
又
[来源:]
![]()
所以当
时,恒有
;当
时,恒有![]()
;
故使命题成立的正整数m的最大值为5
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com