① -1≤a≤1.∵对x∈[-1.1].f(x)是连续函数.且只有当a=1时. 查看更多

 

题目列表(包括答案和解析)

f(x)=
ax2+1
-bx
x≥0
cexx<0
其中a>0
(1)若f(x)在R上连续,求c
(2)若要使
lim
x→+∞
f(x)=0
,则a与b应满足哪些条件?
(3)若对于任意的a∈[2,3],f(x)是[0,+∞)的单调减函数,求b的范围.

查看答案和解析>>

附加题:
连续函数f(x)满足:对于任何x、y∈R,都有f(x+y)=f(x)?f(y)成立,且f(x)不是常数函数.
(Ⅰ)求证:对于任意x∈R,都有f(x)>0;
(Ⅱ)求证:对于任意x∈Q,都有f(x)=[f(1)]x
(Ⅲ)设f(1)=a,求证:对于任意x∈R,都有f(x)=ax

查看答案和解析>>

“我们称使f(x)=0的x为函数yf(x)的零点.若函数yf(x)在区间[ab]上是连续的、单调的函数,且满足f(af(b)<0,则函数yf(x)在区间[ab]上有唯一的零点”.对于函数f(x)=6ln(x+1)-x2+2x-1.

(1)讨论函数f(x)在其定义域内的单调性,并求出函数极值;

(2)证明连续函数f(x)在[2,+∞)内只有一个零点.

查看答案和解析>>

已知函数f(x)的图象是连续不断的曲线,有如下的x与f(x)的对应值表

X

 

1

2

3

4

5

6

7

f(x)

132.1

15.4

-2.31

8.72

 

-6.31

-125.1

12.6

那么,函数f(x)在区间[1,6]上的零点至少有(  )

A.5个          B.4个

C.3个                    D.2个

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>


同步练习册答案