题目列表(包括答案和解析)
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线
过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线
的方程.
【解析】
第一问因为设C(x,y)(
)
……3分
∵M是不等边三解形ABC的外心,∴|MA|=|MC|,即
(2)
由(1)(2)得
.所以三角形顶点C的轨迹方程为
,
.…6分
第二问直线l的方程为y=kx+1
由
消y得
。 ∵直线l与曲线D交于P、N两点,∴△=
,
又
,
∵
,∴![]()
得到直线方程。
设
,椭圆方程为
,抛物线方程为
。如图所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G。已知抛物线在点
G的切线经过椭圆的右焦点F1。
(1)求满足条件的椭圆方程和抛物线方程; (6分)
(2)设A、B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具
体求出这些点的坐标)。(8分)
设
,椭圆方程为
,抛物线方程为
。如图所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G。已知抛物线在点
G的切线经过椭圆的右焦点F1。
(1)求满足条件的椭圆方程和抛物线方程; (6分)
(2)设A、B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具
体求出这些点的坐标)。(8分)
已知圆M的方程为:x2+y2-2x-2y-6=0,以坐标原点为圆心的圆N与圆M相切.
(1)求圆N的方程;
(2)圆N与x轴交于E、F两点,圆内的动点D使得|DE|、|DO|、|DF|成等比数列,求·的取值范围;
(3)过点M作两条直线分别与圆N相交于A、B两点,且直线MA和直线MB的倾斜角互补,试判断直线MN和AB是否平行?请说明理由
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com