题目列表(包括答案和解析)
设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴.已知a=1,b=2,p=2,求点Q的坐标。
⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。
⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。
设平面直角坐标系
中,设二次函数
的图象与坐标轴有三个交点,经过这三个交点的圆记为C。
(1)求实数
的取值范围;
(2)求圆
的方程;
(3)问圆
是否经过某定点(其坐标与
无关)?请证明你的结论。
设复数
满足
,且
在复平面上对应的点在第二、四象限的角平分线上,若
,求
和
的值。
设平面直角坐标系
中,设二次函数
的图象与坐标轴有三个交点,经过这三个交点的圆记为C。
(1)求实数
的取值范围;
(2)求圆
的方程;
(3)问圆
是否经过某定点(其坐标与
无关)?请证明你的结论。
一、选择题:本大题共10个小题,每小题5分,共50分.
题号
1
2
3
4
5
6
7
8
9
10
答案
C
B
C
D
C
B
A
D
B
A
二、填空题:本大题共4个小题,每小题4分,共16分.
11. 630 12. 2k 13.
14. ①②③
三、解答题:本大题共6个小题,每小题14分,共84分.
15.
(4分)
由题意得
16.
有分布列:

0
1
2
3
P




从而期望
17.(1)
又

(2) 


(3)DE//AB,
(4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB
因为BB

18.(1) 由题意得
(2) 
所以直线
的斜率为
令
,则直线
的斜率
,
19.(1)由韦达定理得


是首项为4,公差为2的等差数列。
(2)由(1)知
,则
原式左边=
=
=右式。故原式成立。
20.令x=y=0,有
,令y=-x则
得
故(1)得证。
(2)在R上任取x1,x2且
,且
,
所以
在R上单调递增;
(3)
由
得
;
由
得
;因为
,
所以
无解,即圆心到直线的距离大于或等于半径2,只需
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com