(1)证明:是奇函数, 查看更多

 

题目列表(包括答案和解析)

设奇函数f(x)对任意x∈R都有f(x)=f(x-1)+
1
2

(1)求f(
1
2
)
f(
k
n
)+f(
n-k
n
)(k=0,1,2,…,n)
的值;
(2)数列{an}满足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
-f(
1
2
)
,数列{an}是等差数列吗?请给予证明.

查看答案和解析>>

函数是奇函数,且
(1)求f(x)的解析式;
(2)证明:f(x)在(-1,1)上是增函数.

查看答案和解析>>

已知是奇函数,且其图象经过点(1,3)和(2,3)。

(1)求的表达式;

(2)用单调性的定义证明:上是减函数;

(3)上是增函数还是减函数?(只需写出结论,不需证明)

 

查看答案和解析>>

函数数学公式是奇函数,且数学公式
(1)求f(x)的解析式;
(2)证明:f(x)在(-1,1)上是增函数.

查看答案和解析>>

将奇函数的图象关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:
①函数y=f(x)满足f(a+x)+f(a-x)=2b的充要条件是y=f(x)的图象关于点(a,b)成中心对称.
②函数y=f(x)满足F(x)=f(x+a)-f(a)为奇函数的充要条件是y=f(x)的图象关于点(a,f(a))成中心对称(注:若a不属于x的定义域时,则f(a)不存在).
利用上述结论完成下列各题:
(1)写出函数f(x)=tanx的图象的对称中心的坐标,并加以证明.
(2)已知m(m≠-1)为实数,试问函数数学公式的图象是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.
(3)若函数数学公式的图象关于点数学公式成中心对称,求t的值.

查看答案和解析>>

一、选择题:本大题共10个小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

C

D

C

B

A

D

B

A

二、填空题:本大题共4个小题,每小题4分,共16分.

11.  630       12.  2k   13.             14.     

三、解答题:本大题共6个小题,每小题14分,共84分.

15.(4分)     

由题意得  

16. 有分布列:

0

1

2

3

P

从而期望

17.(1)

       又

        

   (2)

      

      

   (3)DE//AB,

   (4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB1C1C上的射影。

     因为BB1C1C是正方形,

   

18.(1) 由题意得  

(2)

所以直线的斜率为

,则直线的斜率                                       

19.(1)由韦达定理得

是首项为4,公差为2的等差数列。

(2)由(1)知,则

原式左边=

==右式。故原式成立。

 

20.令x=y=0,有,令y=-x则

故(1)得证。

 (2)在R上任取x1,x2,且

 

所以在R上单调递增;

 (3)

;因为

所以无解,即圆心到直线的距离大于或等于半径2,只需

 

 


同步练习册答案