.所以.从而圆心到直线的距离. 查看更多

 

题目列表(包括答案和解析)

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

在极坐标系中,圆和直线相交于两点,求线段的长

【解析】本试题主要考查了极坐标系与参数方程的运用。先将圆的极坐标方程圆 即 化为直角坐标方程即

然后利用直线 ,得到圆心到直线的距离,从而利用勾股定理求解弦长AB。

解:分别将圆和直线的极坐标方程化为直角坐标方程:

 即 即

,  ∴  圆心    ---------3分

直线 ,   ------6分

则圆心到直线的距离,----------8分

      即所求弦长为

 

查看答案和解析>>

在平面直角坐标系xoy中,直线l的参数方程是
x=
3
+
1
2
t
y=3+
3
2
t
(其中t为参数),以Ox为极值的极坐标系中,圆C的极坐标方程为ρ=4cosθ,则圆心到直线的距离为
3
3

查看答案和解析>>

(2012•丰台区一模)在直角坐标系xOy中,直线l的参数方程是
x=1+
3
2
t
y=
1
2
t
(t为参数).以O为极点,x轴正方向极轴的极坐标系中,圆C的极坐标方程是ρ2-4ρcosθ+3=0.则圆心到直线的距离是
1
2
1
2

查看答案和解析>>

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>


同步练习册答案