解法三:将与椭圆方程联立成方程组消去得:,设.则.11 查看更多

 

题目列表(包括答案和解析)

椭圆的左、右焦点分别为,一条直线经过点与椭圆交于两点.

⑴求的周长;

⑵若的倾斜角为,求的面积.

【解析】(1)根据椭圆的定义的周长等于4a.

(2)设,则,然后直线l的方程与椭圆方程联立,消去x,利用韦达定理可求出所求三角形的面积.

 

查看答案和解析>>

设双曲线的两个焦点分别为,离心率为2.

(1)求双曲线的渐近线方程;

(2)过点能否作出直线,使与双曲线交于两点,且,若存在,求出直线方程,若不存在,说明理由.

【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.

(2)设直线l的方程为,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.

 

查看答案和解析>>

如图,直线与抛物线交于两点,与轴相交于点,且.

(1)求证:点的坐标为

(2)求证:

(3)求的面积的最小值.

【解析】设出点M的坐标,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为,然后与抛物线方程联立消x,根据,即可建立关于的方程.求出的值.

(2)在第(1)问的基础上,证明:即可.

(3)先建立面积S关于m的函数关系式,根据建立即可,然后再考虑利用函数求最值的方法求最值.

 

查看答案和解析>>

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1

(1)   求曲线C的方程.

(2)   是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

【解析】(1)由题意知曲线C上的点到F(1,0)的距离与到直线x=-1的距离相等.

可确定其轨迹是抛物线,即可求出其方程为y2=4x.

(2)设过点M的直线方程为x=ty+m,然后与抛物线方程联立,消去x,利用韦达定理表示出,再证明其小于零即可.

 

查看答案和解析>>

直线和圆锥曲线的位置关系问题是几何中最常见的问题,对于普通方程,可以把它们的方程联立,根据方程组解的情况来判断交点情况.那么对于参数方程,又该如何判断它们的交点情况呢?

查看答案和解析>>


同步练习册答案