题目列表(包括答案和解析)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
|
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
|
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高频数分布表
|
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
|
频数 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求该校男生的人数并完成下面频率分布直方图;
![]()
(II)估计该校学生身高在
的概率;
(III)从样本中身高在180
190cm之间的男生中任选2人,求至少有1人身高在185
190cm之间的概率。
【解析】第一问样本中男生人数为40 ,
由分层抽样比例为10%可得全校男生人数为400
(2)中由表1、表2知,样本中身高在
的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在
的频率
故由
估计该校学生身高在
的概率
(3)中样本中身高在180
185cm之间的男生有4人,设其编号为①②③④ 样本中身高在185
190cm之间的男生有2人,设其编号为⑤⑥从上述6人中任取2人的树状图,故从样本中身高在180
190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185
190cm之间的可能结果数为9,因此,所求概率![]()
由表1、表2知,样本中身高在
的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在![]()
的频率![]()
-----------------------------------------6分
故由
估计该校学生身高在
的概率
.--------------------8分
(3)样本中身高在180
185cm之间的男生有4人,设其编号为①②③④ 样本中身高在185
190cm之间的男生有2人,设其编号为⑤⑥从上述6人中任取2人的树状图为:
![]()
--10分
故从样本中身高在180
190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185
190cm之间的可能结果数为9,因此,所求概率![]()
解:因为有负根,所以
在y轴左侧有交点,因此![]()
解:因为函数没有零点,所以方程
无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数
的分布列。
(本题16分)已知函数
,其中e是自然数的底数,
,
(1)当
时,解不等式
;
(2)若当
时,不等式
恒成立,求a的取值范围;
(3)当
时,试判断:是否存在整数k,使得方程
在![]()
上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。
如图所示的长方体
中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得证明
(3)因为∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴利用法向量的夹角公式,
,
∴
与
的夹角为
,即二面角
的大小为
.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接
,则点
、
,
![]()
∴
,又点
,
,∴![]()
∴
,且
与
不共线,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
为面
的法向量.∵
,
,
∴
为平面
的法向量.∴
,
∴
与
的夹角为
,即二面角
的大小为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com