(2)证明:①当时..等式成立, ┈┈┈5分 查看更多

 

题目列表(包括答案和解析)

选考题:从以下3题中选择2题做答,每题7分,若3题全做,则按前2题给分。

(1)(选修4—2   矩阵与变换)(本题满分7分)

变换是将平面上每个点的横坐标乘2,纵坐标乘4,变到点

(Ⅰ)求变换的矩阵;

(Ⅱ)圆在变换的作用下变成了什么图形?

(2)(选修4—4 参数方程与极坐标)(本题满分7分)

在极坐标系下,已知圆O:和直线

(Ⅰ)求圆O和直线的直角坐标方程;

(Ⅱ)当时,求直线与圆O公共点的一个极坐标.

(3)(选修4—5  不等式证明选讲)(本题满分7分)

对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

(本小题满分12分)

已知点,过点作抛物线的切线,切点在第二象限,如图.

(Ⅰ)求切点的纵坐标;

(Ⅱ)若离心率为的椭圆  恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

21(本小题满分12分)

已知函数 .

(1)讨论函数的单调性;

(2)当时,恒成立,求实数的取值范围;

(3)证明:.

22.选修4-1:几何证明选讲

如图,是圆的直径,是弦,的平分线交圆于点,交的延长线于点于点

(1)求证:是圆的切线;

(2)若,求的值。

23.选修4—4:坐标系与参数方程

在平面直角坐标系中,直线过点且倾斜角为,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点;

(1)若,求直线的倾斜角的取值范围;

(2)求弦最短时直线的参数方程。

24. 选修4-5 不等式选讲

已知函数

   (I)试求的值域;

   (II)设,若对,恒有成立,试求实数a的取值范围。

查看答案和解析>>

(本小题满分16分)

按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.

现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为

(1)求关于的表达式;当时,求证:=

(2)设,当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为,试问能否适当选取的值,使得同时成立,但等号不同时成立?试说明理由。

查看答案和解析>>

(本小题满分16分)

按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.

现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为

(1)求关于的表达式;当时,求证:=

(2)设,当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为,试问能否适当选取的值,使得同时成立,但等号不同时成立?试说明理由。

 

查看答案和解析>>

(本小题满分16分)
按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为,则他对这两种交易的综合满意度为.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为
(1)求关于的表达式;当时,求证:=
(2)设,当分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为,试问能否适当选取的值,使得同时成立,但等号不同时成立?试说明理由。

查看答案和解析>>


同步练习册答案