题目列表(包括答案和解析)
把函数
的图象按向量
平移得到函数
的图象.
(1)求函数
的解析式; (2)若
,证明:
.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
,便可以得到结论。第二问中,令
,然后求导,利用最小值大于零得到。
(1)解:设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 证明:令
,……6分
则
……8分
,∴
,∴
在
上单调递增.……10分
故
,即![]()
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
已知函数
.
(1)求
在区间
上的最大值;
(2)若函数
在区间
上存在递减区间,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数
,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在
上存在递减区间,即
在
上有解,即
,即可,可得到。
解:(1)
,
令
,解得
……………3分
![]()
,
在
上为增函数,在
上为减函数,
.
…………6分
(2)![]()
在
上存在递减区间,
在
上有解,……9分
![]()
在
上有解,
![]()
,
所以,实数
的取值范围为
已知函数
的图象过点(-1,-6),且函数
的图象关于y轴对称.
(1)求
、
的值及函数
的单调区间;
(2)若函数
在(-1,1)上单调递减,求实数
的取值范围。
【解析】本试题主要考查了导数在函数研究中的应用。利用导数能求解函数的单调性和奇偶性问题,以及能根据函数单调区间,逆向求解参数的取值范围的求解问题。要利用导数恒小于等于零来解得 。
已知函数
的图象过点(-1,-6),且函数
的图象关于y轴对称.
(1)求
、
的值及函数
的单调区间;
(2)若函数
在(-1,1)上单调递减,求实数
的取值范围。
【解析】本试题主要考查了导数在函数研究中的应用。利用导数能求解函数的单调性和奇偶性问题,以及能根据函数单调区间,逆向求解参数的取值范围的求解问题。要利用导数恒小于等于零来解得 。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com