(2)设点P为椭圆上一动点.且.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足F1MF2=
π
3

(1)求椭圆的离心率e的取值范围;(2)设O为坐标原点,P是椭圆C上的一个动点,试求t=
|PF1-PF2|
|OP|
的取值范围.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足F1MF2=
π
3

(1)求椭圆的离心率e的取值范围;(2)设O为坐标原点,P是椭圆C上的一个动点,试求t=
|PF1-PF2|
|OP|
的取值范围.

查看答案和解析>>

精英家教网设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,-
4
5
),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

查看答案和解析>>

若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e为
3
5
,且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1)求椭圆C的方程;
(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;
(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k的值.

查看答案和解析>>

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.

(1)求椭圆的方程;

(2)求动点C的轨迹E的方程;

(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且 ,求直线MN的方程.

 

查看答案和解析>>

 

一.选择题

BADCC  ACCCC   AD

二.填空题

13.      14. 29     15.开闭区间均可)   16.  

三、解答题

17.解:

(1)∵, ∴,

………3分

.,  ∴………6分

(2)由题知,得 ………8分

得sinB=2cosB, ………10分

………12分

18.解:

(1)得分为60分,12道题必须全做对。在其余的5道题中,有两道题答对的概率为

有一道题答对的概率为,还有两道答对的概率为………2分

所以得分为60分的概率为:P=………4分   

   (2)由可得 ………5分

,得2<x<15,则x=5或x=10,则相应得分为55分或50分……7分

得分为50分表示只做对了10道题,做错2道题,所以概率为

+

+= ………9分

得分为55分表示只做对了11道题,做错1道题,所以概率为:

P2== ………11分

则所求概率为+=。答:该考生得分的概率为 ………12分

19.证明:

(1)面A1B1C1∥面ABC,故B1C1∥BC,A1C1∥AC又BC⊥AC ,则B1C1⊥A1C1………2分

又 面AB1C⊥面ABC,则BC⊥面AB1C,则BC⊥AB1B1C1⊥AB1  又∵B1C1∩A1C1=C1

 B1C1∩AB1=B1,故B1C1为异面直线AB1与A1C1的公垂线………4分

(2)由于BC⊥面AB1C   则面VBC⊥面AB1C,过A作AH⊥B1C于H,则AH⊥面VBC

 又AB1C 为等边三角形且AC=,则AH=为A到平面VBC的距离………7分

(3)过H作HG⊥VB于G,连AG则∠AGH为二面角A-VB-C的平面角

在RtB1CB中 ………10分

又RtB1HG∽RtB1BC  则,即

故二面角A-VB-C的大小为………12分

(本题也可用建立空间直角坐标系然后用空间向量求解,评分标准参照执行)

20.解:

(1)设{an}的公差d,为{bn}的公比为q,则

………6分

(2){Cn}的前n-1项中共有{an}中的1+2+3+…(n-1)=个项………8分

且{an}的第项为………10分

故Cn是首项为,公差为2,项数为n的等差数列的前n项和,

………12分

21.解:

(1)f(x)=x2+ax+b,由 f(3)=9+3a+b=0得b=-3a-9………2分

(2)令f(x)= x2+ax-3a-9=(x-3)(x+a+3)=0得x=3或x=-a-3

当a=-6时,f(x)=≥0,则f(x)无单调递减区间………4分

当a>-6时,令f(x) =(x-3)(x+a+3)≤0,得-a-3≤x≤3,

则f(x)的单调递减区间为[-a-3,3] ………6分

当a<-6时,易得f(x)的单调递减区间为[3,-a-3]

综上所述当a=-6时, f(x)无单调递减区间;当a>-6时,f(x)的单调递减区间为[-a-3,3],

 当a<-6时, f(x)的单调递减区间为[3,-a-3] ………8分

(3)由a>0知-a-3<-3,由(2)知f(x)在[-3,3]上是减函数,又-3≤3cos≤3,-3≤3sin≤3,则要恒成立只要|f(-3)-f(3)|<72恒成立………10分

又|f(-3)-f(3)|=18|a+2|<72,得-6<a<2,又a>0,则0<a<2………12分

22.解:

(1)由题意设椭圆方程为………1分

,椭圆方程为………4分

(2)设

………7分

………9分

=

………11分

由于

因此的取值范围为………14分

 

 


同步练习册答案