⑵.求直线与平面所成角的大小, 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)如图,已知都是边长为的等边三角形,且平面平面,过点平面,且

(1)求证:平面

(2)求直线与平面所成角的大小.

 

 

 

 

 

 

查看答案和解析>>

(08年龙岩一中冲刺文)(12分)

如图,梯形中,的中点,将沿折起,使点折到点的位置,且二面角的大小为

(1)求证:

(2)求直线与平面所成角的大小

(3)求点到平面的距离

查看答案和解析>>

如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,.

(Ⅰ)求证:底面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.

 

查看答案和解析>>

如图,四棱锥的底面为矩形,是四棱锥的高,

所成角为的中点,上的动点.

(Ⅰ)证明:

(Ⅱ)若,求直线与平面所成角的大小.

 

 

 

查看答案和解析>>

如图,为圆的直径,点在圆上,,矩形和圆所在的平面互相垂直.已知,

(1)求证:直线平面

(2)求直线与平面所成角的大小;

(3)当的长为何值时,二面角的大小为

 

 

 

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期为.                                 (8分)
(2)∵,∴
.                               (12分)

18、解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………6分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足为,连结,由侧面底面,得底面

因为,所以

,故为等腰直角三角形,

由三垂线定理,得

(Ⅱ)由(Ⅰ)知,依题设

,由,得

的面积

连结,得的面积

到平面的距离为,由于,得

解得

与平面所成角为,则

所以,直线与平面所成的我为

20、解:(I)由题意知,因此,从而

又对求导得

由题意,因此,解得

(II)由(I)知),令,解得

时,,此时为减函数;

时,,此时为增函数.

因此的单调递减区间为,而的单调递增区间为

(III)由(II)知,处取得极小值,此极小值也是最小值,要使)恒成立,只需

,从而

解得

所以的取值范围为

21、解:(Ⅰ)解法一:易知

所以,设,则

因为,故当,即点为椭圆短轴端点时,有最小值

,即点为椭圆长轴端点时,有最大值

解法二:易知,所以,设,则

(以下同解法一)

(Ⅱ)显然直线不满足题设条件,可设直线

联立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的两个根为

时,

所以

时,

所以

时,

所以时;

时,

所以

(II)解:

(III)证明:

所以

时,

同时,

综上,当时,

 

 

 


同步练习册答案