(Ⅱ)判定函数()= 是否为闭函数?并说明理由, 查看更多

 

题目列表(包括答案和解析)

若函数f(x)同时满足下列两个性质,则称其为“规则函数”
①函数f(x)在其定义域上是单调函数;
②在函数f(x)的定义域内存在闭区间[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2

请解答以下问题:
(Ⅰ) 判断函数f(x)=x2-2x,(x∈(0,+∞))是否为“规则函数”?并说明理由;
(Ⅱ)判断函数g(x)=-x3是否为“规则函数”?并说明理由.若是,请找出满足②的闭区间[a,b];
(Ⅲ)若函数h(x)=
x-1
+t
是“规则函数”,求实数t的取值范围.

查看答案和解析>>

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=数学公式是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-a
x+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

对于函数,D是此函数的定义域),若同时满足下列条件:
在D内单调递减或单调递增;
②存在区间[a,b]D,使在[a,b]上的值域为[a,b];
那么把叫闭函数;
(1)求闭函数符合条件②的区间[a,b];
(2)判断函数是否为闭函数?并说明理由;
(3)是闭函数,求实数k的取值范围。

查看答案和解析>>

一.选择题:

1.B  2.D  2.B  3.C   4.C 5. A  6.C   7.B  8.A  9.D  10.D

 

二.填空题:

11.a+b  12.{x|x>2, 或0<x<1} 13.4,或-1  14. 15.120º   16.②④

三.解答题:

17.由题设,得,双曲线为,  …… 2分

直线AB的方程为 ,               ………………………  4分

代入到双曲线方程得:4x2+20ax-29a2=0,           ………………………   6分

,由得:

12=,                         ………………………  9分

解得a2=1,则b2=3,所以为所求。………………………  12分

18.解:(Ⅰ)由题设可得 f '(x)=3x2+2ax+b,           ………………………  2分

   ∵ f '(x)的图像过点(0,0),(2,0)

                             ………………………  5分

解之得:a=-3,b=0                             ………………………  7分

(Ⅱ)由f '(x)=3x2-6x>0,得x>2,或x<0;      ………………………  9分

∴ 当在(-∞,0)上,在(0,2)上,在,

在(-∞0),上递增,在(0,2)上递减,      

因此在x=2处取得极小值,所以x0=2,            ………………………  12分

由f (2)=-5,得c=-1,

∴f(x)=x3-3x2-1                               ………………………  14分

19.:解法一:

 (Ⅰ) 过P作MN∥B1C1,分别交A1B1、D1C1于M、N,则M、N A1B1、D1C1的中点,连MB,NC由四边形BCNM是平行四边形,             ………………………  2分

∵E、M分别为AB、A1B1中点,∴A1E∥MB

又MB平面PBC,∴A1E∥平面PBC。               ………………………  4分

(Ⅱ)  过A作AF⊥MB,垂足为F,连PF,

∵BC⊥平面ABB1A1,AF平面ABB1A1

∴AF⊥BC, BC∩MB=B,∴AF⊥平面PBC,

∴∠APF就是直线AP与平面PBC所成的角,  ………… 6分

设AA1=a,则AB=a,AF=,AP=,sin∠APF=

所以,直线AP与平面PBC所成的角是arcsin。             ………… 9分

(Ⅲ)连OP、OB、OC,则OP⊥BC,由三垂线定理易得OB⊥PC,OC⊥PB,所以O在平面PBC中的射影是△PBC的垂心,又O在平面PBC中的射影是△PBC的重心,则△PBC为正三角形。即PB=PC=BC                                 ………… 12分

所以k=

反之,当k=时,PA=AB=PB=PC=BC,所以三棱锥为正三棱锥,

∴O在平面PBC内的射影为的重心                     ………… 14分

解法二:(建立空间坐标系)

 

 

 

 

 

 

20.解  (Ⅰ)由=3在[ab]上为减函数,

   得   可得a = ?1 , b = 1 ,∴ 所求区间是[?1,1].  ………… 5分

 

    (Ⅱ)取1 = 1 , 2 = 10,可得()不是减函数;取1 =,可得()在(0 , +∞)不是增函数,所以()不是闭函数.         ………… 10分

(Ⅲ)设函数符合条件②的区间为[ab],则

a b是方程=的两个实根,命题等价于

有两个不等实根.            ………… 13分

k时,解得:,∴

时,这时无解.

所以 k的取值范围是.                          ………… 16分

 

 

21.解:(Ⅰ)由f(x)=x3+ax2+bx+c关于点(1,1)成中心对称,所以

        x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2               ………… 3分

对一切实数x恒成立.得:a=-3,b+c=3,

对由f '(1)=0,得b=3,c=0,

故所求的表达式为:f(x)= x3-3x2+3x.                      ………… 7分

(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an    (1)

令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=,………… 10分

∴ 1>bn >bn+1 >0

    (a1-a2)?(a3-1)+(a2-a3)?(a4-1)+…+(an-an+1)?(an+2-1)=

=b1-bn+1<b1<1。                    ………… 14分

 (本题证法较多,其它证明方法得分可参照以上评分标准分步给分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

参考答案

一.选择题:

1.B  2.D  2.B  3.C   4.C 5. A  6.C   7.B  8.A  9.D  10.D

 

二.填空题:

11.a+b  12.{x|x>2, 或0<x<1} 13.4,或-1  14. 15.120º   16.②④

三.解答题:

17.由题设,得,双曲线为,  …… 2分

直线AB的方程为,                   ………………………  4分

代入到双曲线方程得:,       ………………………   6分

,由得:

,                         ………………………  9分

解得,则,所以为所求。………………………  12分

18.解:(Ⅰ)由题设可得 f '(x)=3x2+2ax+b,           ………………………  2分

   ∵ f '(x)的图像过点(0,0),(2,0)

                             ………………………  5分

解之得:a=-3,b=0                             ………………………  7分

(Ⅱ)由f '(x)=3x2-6x>0,得x>2,或x<0;      ………………………  9分

∴ 当在(-∞,0)上,在(0,2)上,在,

在(-∞,0),上递增,在(0,2)上递减,      

因此在x=2处取得极小值,所以x0=2,            ………………………  12分

由f (2)=-5,得c=-1,

∴f(x)=x3-3x2-1                               ………………………  14分

19.:解法一:

 (Ⅰ) 过P作MN∥B1C1,分别交A1B1、D1C1于M、N,则M、N A1B1、D1C1的中点,连MB,NC由四边形BCNM是平行四边形,             ………………………  2分

∵E、M分别为AB、A1B1中点,∴A1E∥MB

又MB平面PBC,∴A1E∥平面PBC。               ………………………  4分

(Ⅱ)  过A作AF⊥MB,垂足为F,连PF,

∵BC⊥平面ABB1A1,AF平面ABB1A1

∴AF⊥BC, BC∩MB=B,∴AF⊥平面PBC,

∴∠APF就是直线AP与平面PBC所成的角,  ………… 6分

设AA1=a,则AB=a,AF=,AP=,sin∠APF=

所以,直线AP与平面PBC所成的角是arcsin。             ………… 9分

(Ⅲ)连OP、OB、OC,则OP⊥BC,由三垂线定理易得OB⊥PC,OC⊥PB,所以O在平面PBC中的射影是△PBC的垂心,又O在平面PBC中的射影是△PBC的重心,则△PBC为正三角形。即PB=PC=BC                                 ………… 12分

所以k=

反之,当k=时,PA=AB=PB=PC=BC,所以三棱锥为正三棱锥,

∴O在平面PBC内的射影为的重心                     ………… 14分

解法二:(建立空间坐标系)

 

 

 

 

 

 

20.解  (Ⅰ)由=3在[ab]上为减函数,

   得   可得a = ?1 , b = 1 ,∴ 所求区间是[?1,1].  ………… 5分

 

    (Ⅱ)取1 = 1 , 2 = 10,可得()不是减函数;取1 =,可得()在(0 , +∞)不是增函数,所以()不是闭函数.         ………… 10分

(Ⅲ)设函数符合条件②的区间为[ab],则

a b是方程=的两个实根,命题等价于

有两个不等实根.            ………… 13分

k时,解得:,∴

时,这时无解.

所以 k的取值范围是.                          ………… 16分

 

 

21.解:(Ⅰ)由f(x)=x3+ax2+bx+c关于点(1,1)成中心对称,所以

        x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2               ………… 3分

对一切实数x恒成立.得:a=-3,b+c=3,

对由f '(1)=0,得b=3,c=0,

故所求的表达式为:f(x)= x3-3x2+3x.                      ………… 7分

(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an    (1)

令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=,………… 10分

∴ 1>bn >bn+1 >0

    (a1-a2)?(a3-1)+(a2-a3)?(a4-1)+…+(an-an+1)?(an+2-1)=

=b1-bn+1<b1<1。                    ………… 14分

 (本题证法较多,其它证明方法得分可参照以上评分标准分步给分)

 

 

 


同步练习册答案